耦合分析框架内波数值模拟及其对梁式平台的影响

IF 0.7 Q4 ENGINEERING, OCEAN
N. Kurup, S. Shi, Leiyong Jiang, Moo-Hyun Kim
{"title":"耦合分析框架内波数值模拟及其对梁式平台的影响","authors":"N. Kurup, S. Shi, Leiyong Jiang, Moo-Hyun Kim","doi":"10.12989/OSE.2015.5.4.261","DOIUrl":null,"url":null,"abstract":"Internal solitary waves occur due to density stratification and are nonlinear in nature. These waves have been observed in many parts of the world including the South China Sea, Andaman Sea and Sulu Sea. Their effect on floating systems has been an emerging field of interest and recent offshore developments in the South China Sea where several offshore oil and gas discoveries are located have confirmed adverse effects including large platform motions and riser system damage. A valid numerical model conforming to the physics of internal waves is implemented in this paper and the effect on a spar platform is studied. The physics of internal waves is modeled by the Korteweg-de Vries (KdV) equation, which has a general solution involving Jacobian elliptical functions. The effects of vertical density stratification are captured by solving the Taylor Goldstein equation. Fully coupled time domain analyses are conducted to estimate the effect of internal waves on a typical truss spar, which is configured to South China Sea development requirements and environmental conditions. The hull, moorings and risers are considered as an integrated system and the platform global motions are analyzed. The study could be useful for future guidance and development of offshore systems in the South China Sea and other areas where the internal wave phenomenon is prominent.","PeriodicalId":44219,"journal":{"name":"Ocean Systems Engineering-An International Journal","volume":"5 1","pages":"261-277"},"PeriodicalIF":0.7000,"publicationDate":"2015-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Numerical modeling of internal waves within a coupled analysis framework and their influence on spar platforms\",\"authors\":\"N. Kurup, S. Shi, Leiyong Jiang, Moo-Hyun Kim\",\"doi\":\"10.12989/OSE.2015.5.4.261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Internal solitary waves occur due to density stratification and are nonlinear in nature. These waves have been observed in many parts of the world including the South China Sea, Andaman Sea and Sulu Sea. Their effect on floating systems has been an emerging field of interest and recent offshore developments in the South China Sea where several offshore oil and gas discoveries are located have confirmed adverse effects including large platform motions and riser system damage. A valid numerical model conforming to the physics of internal waves is implemented in this paper and the effect on a spar platform is studied. The physics of internal waves is modeled by the Korteweg-de Vries (KdV) equation, which has a general solution involving Jacobian elliptical functions. The effects of vertical density stratification are captured by solving the Taylor Goldstein equation. Fully coupled time domain analyses are conducted to estimate the effect of internal waves on a typical truss spar, which is configured to South China Sea development requirements and environmental conditions. The hull, moorings and risers are considered as an integrated system and the platform global motions are analyzed. The study could be useful for future guidance and development of offshore systems in the South China Sea and other areas where the internal wave phenomenon is prominent.\",\"PeriodicalId\":44219,\"journal\":{\"name\":\"Ocean Systems Engineering-An International Journal\",\"volume\":\"5 1\",\"pages\":\"261-277\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2015-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ocean Systems Engineering-An International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12989/OSE.2015.5.4.261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, OCEAN\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Systems Engineering-An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12989/OSE.2015.5.4.261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
引用次数: 11

摘要

内孤立波是由密度分层引起的,本质上是非线性的。包括南海、安达曼海和苏禄海在内的世界许多地方都观测到了这些海浪。它们对浮式系统的影响一直是一个新兴的研究领域,最近在中国南海发现的几个海上油气发现已经证实了不利的影响,包括大的平台运动和隔水管系统损坏。本文建立了一个符合内波物理特性的有效数值模型,并研究了内波对梁式平台的影响。内波的物理性质由Korteweg-de Vries (KdV)方程来模拟,该方程具有包含雅可比椭圆函数的通解。垂直密度分层的影响可通过求解泰勒·戈尔茨坦方程得到。针对南海开发要求和环境条件,对典型桁架梁结构进行了全耦合时域分析,分析了内波对结构的影响。将船体、系泊和隔水管视为一个整体系统,分析了平台的整体运动。该研究可为今后南海及其他内波现象突出地区近海系统的指导和开发提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical modeling of internal waves within a coupled analysis framework and their influence on spar platforms
Internal solitary waves occur due to density stratification and are nonlinear in nature. These waves have been observed in many parts of the world including the South China Sea, Andaman Sea and Sulu Sea. Their effect on floating systems has been an emerging field of interest and recent offshore developments in the South China Sea where several offshore oil and gas discoveries are located have confirmed adverse effects including large platform motions and riser system damage. A valid numerical model conforming to the physics of internal waves is implemented in this paper and the effect on a spar platform is studied. The physics of internal waves is modeled by the Korteweg-de Vries (KdV) equation, which has a general solution involving Jacobian elliptical functions. The effects of vertical density stratification are captured by solving the Taylor Goldstein equation. Fully coupled time domain analyses are conducted to estimate the effect of internal waves on a typical truss spar, which is configured to South China Sea development requirements and environmental conditions. The hull, moorings and risers are considered as an integrated system and the platform global motions are analyzed. The study could be useful for future guidance and development of offshore systems in the South China Sea and other areas where the internal wave phenomenon is prominent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
22.20%
发文量
0
期刊介绍: The OCEAN SYSTEMS ENGINEERING focuses on the new research and development efforts to advance the understanding of sciences and technologies in ocean systems engineering. The main subject of the journal is the multi-disciplinary engineering of ocean systems. Areas covered by the journal include; * Undersea technologies: AUVs, submersible robot, manned/unmanned submersibles, remotely operated underwater vehicle, sensors, instrumentation, measurement, and ocean observing systems; * Ocean systems technologies: ocean structures and structural systems, design and production, ocean process and plant, fatigue, fracture, reliability and risk analysis, dynamics of ocean structure system, probabilistic dynamics analysis, fluid-structure interaction, ship motion and mooring system, and port engineering; * Ocean hydrodynamics and ocean renewable energy, wave mechanics, buoyancy and stability, sloshing, slamming, and seakeeping; * Multi-physics based engineering analysis, design and testing: underwater explosions and their effects on ocean vehicle systems, equipments, and surface ships, survivability and vulnerability, shock, impact and vibration; * Modeling and simulations; * Underwater acoustics technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信