考虑海洋环境载荷和卸载速度的近海补给船卸载仿真

IF 0.7 Q4 ENGINEERING, OCEAN
Dong-Hoon Jeong, M. Roh, S. Ham
{"title":"考虑海洋环境载荷和卸载速度的近海补给船卸载仿真","authors":"Dong-Hoon Jeong, M. Roh, S. Ham","doi":"10.12989/OSE.2015.5.3.181","DOIUrl":null,"url":null,"abstract":"An OSV (Offshore Support Vessel) is being used to install a structure which is laid on its deck or an adjacent transport barge by lifting off the structure with its own crane, lifting in the air, crossing splash zone, deeply submerging, and lastly landing it. There are some major considerations during these operations. Especially, when lifting off the structure, if operating conditions such as ocean environmental loads and lifting off velocity are not suitable, the collision can be occurred due to the relative motion between the structure and the OSV or the transport barge. To solve this problem, this study performs the physics-based simulation of the lifting off step while the OSV installs the structure. The simulation includes the calculation of dynamic responses of the OSV and the structure, including the collision detection between the transport barge and the structure. To check the applicability of the physics-based simulation, it is applied to a problem of the lifting off step by varying the ocean environmental loads and the lifting off velocity. As a result, it is confirmed that the operability of the lifting off step are affected by the conditions.","PeriodicalId":44219,"journal":{"name":"Ocean Systems Engineering-An International Journal","volume":"5 1","pages":"181-198"},"PeriodicalIF":0.7000,"publicationDate":"2015-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Lifting off simulation of an offshore supply vessel considering ocean environmental loads and lifting off velocity\",\"authors\":\"Dong-Hoon Jeong, M. Roh, S. Ham\",\"doi\":\"10.12989/OSE.2015.5.3.181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An OSV (Offshore Support Vessel) is being used to install a structure which is laid on its deck or an adjacent transport barge by lifting off the structure with its own crane, lifting in the air, crossing splash zone, deeply submerging, and lastly landing it. There are some major considerations during these operations. Especially, when lifting off the structure, if operating conditions such as ocean environmental loads and lifting off velocity are not suitable, the collision can be occurred due to the relative motion between the structure and the OSV or the transport barge. To solve this problem, this study performs the physics-based simulation of the lifting off step while the OSV installs the structure. The simulation includes the calculation of dynamic responses of the OSV and the structure, including the collision detection between the transport barge and the structure. To check the applicability of the physics-based simulation, it is applied to a problem of the lifting off step by varying the ocean environmental loads and the lifting off velocity. As a result, it is confirmed that the operability of the lifting off step are affected by the conditions.\",\"PeriodicalId\":44219,\"journal\":{\"name\":\"Ocean Systems Engineering-An International Journal\",\"volume\":\"5 1\",\"pages\":\"181-198\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2015-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ocean Systems Engineering-An International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12989/OSE.2015.5.3.181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, OCEAN\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Systems Engineering-An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12989/OSE.2015.5.3.181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
引用次数: 1

摘要

OSV(海上支援船)被用来安装安装在甲板上或邻近运输驳船上的结构,其方法是用自己的起重机将结构吊起,在空中吊起,穿过飞溅区,深潜,最后着陆。在这些操作中有一些主要的考虑因素。特别是在吊装构造物时,如果海洋环境载荷和吊装速度等操作条件不合适,构造物与OSV或运输驳船之间的相对运动可能会发生碰撞。为了解决这一问题,本研究对OSV安装结构时的起升步骤进行了基于物理的模拟。仿真包括了船船与结构的动力响应计算,以及运输驳船与结构的碰撞检测。为了验证物理模拟的适用性,将其应用于改变海洋环境载荷和上升速度的上升步骤问题。结果表明,条件对升降台阶的可操作性有一定的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lifting off simulation of an offshore supply vessel considering ocean environmental loads and lifting off velocity
An OSV (Offshore Support Vessel) is being used to install a structure which is laid on its deck or an adjacent transport barge by lifting off the structure with its own crane, lifting in the air, crossing splash zone, deeply submerging, and lastly landing it. There are some major considerations during these operations. Especially, when lifting off the structure, if operating conditions such as ocean environmental loads and lifting off velocity are not suitable, the collision can be occurred due to the relative motion between the structure and the OSV or the transport barge. To solve this problem, this study performs the physics-based simulation of the lifting off step while the OSV installs the structure. The simulation includes the calculation of dynamic responses of the OSV and the structure, including the collision detection between the transport barge and the structure. To check the applicability of the physics-based simulation, it is applied to a problem of the lifting off step by varying the ocean environmental loads and the lifting off velocity. As a result, it is confirmed that the operability of the lifting off step are affected by the conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
22.20%
发文量
0
期刊介绍: The OCEAN SYSTEMS ENGINEERING focuses on the new research and development efforts to advance the understanding of sciences and technologies in ocean systems engineering. The main subject of the journal is the multi-disciplinary engineering of ocean systems. Areas covered by the journal include; * Undersea technologies: AUVs, submersible robot, manned/unmanned submersibles, remotely operated underwater vehicle, sensors, instrumentation, measurement, and ocean observing systems; * Ocean systems technologies: ocean structures and structural systems, design and production, ocean process and plant, fatigue, fracture, reliability and risk analysis, dynamics of ocean structure system, probabilistic dynamics analysis, fluid-structure interaction, ship motion and mooring system, and port engineering; * Ocean hydrodynamics and ocean renewable energy, wave mechanics, buoyancy and stability, sloshing, slamming, and seakeeping; * Multi-physics based engineering analysis, design and testing: underwater explosions and their effects on ocean vehicle systems, equipments, and surface ships, survivability and vulnerability, shock, impact and vibration; * Modeling and simulations; * Underwater acoustics technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信