{"title":"用模糊证据推理评价ERS对船舶溢油事故的有效性","authors":"H. Y. Wang, J. Ren, J. Yang, J. Wang","doi":"10.12989/OSE.2015.5.3.161","DOIUrl":null,"url":null,"abstract":". An emergency response system (ERS) for vessel oil spills is a complex and dynamic system comprising a number of subsystems and activities. Failures may occur during the emergency response operations, this has negative impacts on the effectiveness of the ERS. Of the classes of problems in analyzing failures, the lack of quantitative data is fundamental. In fact, most of the empirical data collected via questionnaire survey is subjective in nature and is inevitably associated with uncertainties caused by the human being‟s inability to provide complete judgement. In addition, incomplete information and/or vagueness of the meaning about the failures add difficulties in evaluating the effectiveness of the system. Therefore this paper proposes a framework to evaluate the ERS effectiveness by using the combination of fuzzy reasoning and evidential synthesis approaches. Based on analyzing the procedure of ERS for oil spills, the failures in the system could be identified, using Analytic Hierarchy Process (AHP) to determine the relative weight of identified failures. Fuzzy reasoning combined with evidential synthesis is applied to evaluate the effectiveness of ERS for oil spills under uncertainties last. The proposed method is capable of dealing with uncertainties in data including ignorance and vagueness which traditional methods cannot effectively handle. A case study is used to illustrate the application of the proposed method. spills using","PeriodicalId":44219,"journal":{"name":"Ocean Systems Engineering-An International Journal","volume":"5 1","pages":"161-179"},"PeriodicalIF":0.7000,"publicationDate":"2015-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating the effectiveness of ERS for vessel oil spills using fuzzy evidential reasoning\",\"authors\":\"H. Y. Wang, J. Ren, J. Yang, J. Wang\",\"doi\":\"10.12989/OSE.2015.5.3.161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". An emergency response system (ERS) for vessel oil spills is a complex and dynamic system comprising a number of subsystems and activities. Failures may occur during the emergency response operations, this has negative impacts on the effectiveness of the ERS. Of the classes of problems in analyzing failures, the lack of quantitative data is fundamental. In fact, most of the empirical data collected via questionnaire survey is subjective in nature and is inevitably associated with uncertainties caused by the human being‟s inability to provide complete judgement. In addition, incomplete information and/or vagueness of the meaning about the failures add difficulties in evaluating the effectiveness of the system. Therefore this paper proposes a framework to evaluate the ERS effectiveness by using the combination of fuzzy reasoning and evidential synthesis approaches. Based on analyzing the procedure of ERS for oil spills, the failures in the system could be identified, using Analytic Hierarchy Process (AHP) to determine the relative weight of identified failures. Fuzzy reasoning combined with evidential synthesis is applied to evaluate the effectiveness of ERS for oil spills under uncertainties last. The proposed method is capable of dealing with uncertainties in data including ignorance and vagueness which traditional methods cannot effectively handle. A case study is used to illustrate the application of the proposed method. spills using\",\"PeriodicalId\":44219,\"journal\":{\"name\":\"Ocean Systems Engineering-An International Journal\",\"volume\":\"5 1\",\"pages\":\"161-179\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2015-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ocean Systems Engineering-An International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12989/OSE.2015.5.3.161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, OCEAN\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Systems Engineering-An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12989/OSE.2015.5.3.161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
Evaluating the effectiveness of ERS for vessel oil spills using fuzzy evidential reasoning
. An emergency response system (ERS) for vessel oil spills is a complex and dynamic system comprising a number of subsystems and activities. Failures may occur during the emergency response operations, this has negative impacts on the effectiveness of the ERS. Of the classes of problems in analyzing failures, the lack of quantitative data is fundamental. In fact, most of the empirical data collected via questionnaire survey is subjective in nature and is inevitably associated with uncertainties caused by the human being‟s inability to provide complete judgement. In addition, incomplete information and/or vagueness of the meaning about the failures add difficulties in evaluating the effectiveness of the system. Therefore this paper proposes a framework to evaluate the ERS effectiveness by using the combination of fuzzy reasoning and evidential synthesis approaches. Based on analyzing the procedure of ERS for oil spills, the failures in the system could be identified, using Analytic Hierarchy Process (AHP) to determine the relative weight of identified failures. Fuzzy reasoning combined with evidential synthesis is applied to evaluate the effectiveness of ERS for oil spills under uncertainties last. The proposed method is capable of dealing with uncertainties in data including ignorance and vagueness which traditional methods cannot effectively handle. A case study is used to illustrate the application of the proposed method. spills using
期刊介绍:
The OCEAN SYSTEMS ENGINEERING focuses on the new research and development efforts to advance the understanding of sciences and technologies in ocean systems engineering. The main subject of the journal is the multi-disciplinary engineering of ocean systems. Areas covered by the journal include; * Undersea technologies: AUVs, submersible robot, manned/unmanned submersibles, remotely operated underwater vehicle, sensors, instrumentation, measurement, and ocean observing systems; * Ocean systems technologies: ocean structures and structural systems, design and production, ocean process and plant, fatigue, fracture, reliability and risk analysis, dynamics of ocean structure system, probabilistic dynamics analysis, fluid-structure interaction, ship motion and mooring system, and port engineering; * Ocean hydrodynamics and ocean renewable energy, wave mechanics, buoyancy and stability, sloshing, slamming, and seakeeping; * Multi-physics based engineering analysis, design and testing: underwater explosions and their effects on ocean vehicle systems, equipments, and surface ships, survivability and vulnerability, shock, impact and vibration; * Modeling and simulations; * Underwater acoustics technologies.