鞅FCLT的证明

IF 1.3 Q2 STATISTICS & PROBABILITY
W. Whitt
{"title":"鞅FCLT的证明","authors":"W. Whitt","doi":"10.1214/07-PS122","DOIUrl":null,"url":null,"abstract":"This is an expository review paper elaborating on the proof of the martingale functional central limit theorem (FCLT). This paper also reviews tightness and stochastic boundedness, highlighting one-dimensional criteria for tightness used in the proof of the martingale FCLT. This paper supplements the expository review paper Pang, Talreja and Whitt (2007) illustrating the ``martingale method'' \nfor proving many-server heavy-traffic stochastic-process limits \nfor queueing models, supporting diffusion-process approximations.","PeriodicalId":46216,"journal":{"name":"Probability Surveys","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2007-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1214/07-PS122","citationCount":"125","resultStr":"{\"title\":\"Proofs of the martingale FCLT\",\"authors\":\"W. Whitt\",\"doi\":\"10.1214/07-PS122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This is an expository review paper elaborating on the proof of the martingale functional central limit theorem (FCLT). This paper also reviews tightness and stochastic boundedness, highlighting one-dimensional criteria for tightness used in the proof of the martingale FCLT. This paper supplements the expository review paper Pang, Talreja and Whitt (2007) illustrating the ``martingale method'' \\nfor proving many-server heavy-traffic stochastic-process limits \\nfor queueing models, supporting diffusion-process approximations.\",\"PeriodicalId\":46216,\"journal\":{\"name\":\"Probability Surveys\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2007-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1214/07-PS122\",\"citationCount\":\"125\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probability Surveys\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/07-PS122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/07-PS122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 125

摘要

这是一篇阐述鞅泛函中心极限定理证明的解释性综述论文。本文还回顾了紧性和随机有界性,重点介绍了在鞅FCLT证明中使用的一维紧性准则。本文补充了解释性综述论文Pang, Talreja和Whitt(2007),说明了用于证明排队模型的多服务器大流量随机过程限制的“鞅方法”,支持扩散过程近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proofs of the martingale FCLT
This is an expository review paper elaborating on the proof of the martingale functional central limit theorem (FCLT). This paper also reviews tightness and stochastic boundedness, highlighting one-dimensional criteria for tightness used in the proof of the martingale FCLT. This paper supplements the expository review paper Pang, Talreja and Whitt (2007) illustrating the ``martingale method'' for proving many-server heavy-traffic stochastic-process limits for queueing models, supporting diffusion-process approximations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Probability Surveys
Probability Surveys STATISTICS & PROBABILITY-
CiteScore
4.70
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信