{"title":"鞅FCLT的证明","authors":"W. Whitt","doi":"10.1214/07-PS122","DOIUrl":null,"url":null,"abstract":"This is an expository review paper elaborating on the proof of the martingale functional central limit theorem (FCLT). This paper also reviews tightness and stochastic boundedness, highlighting one-dimensional criteria for tightness used in the proof of the martingale FCLT. This paper supplements the expository review paper Pang, Talreja and Whitt (2007) illustrating the ``martingale method'' \nfor proving many-server heavy-traffic stochastic-process limits \nfor queueing models, supporting diffusion-process approximations.","PeriodicalId":46216,"journal":{"name":"Probability Surveys","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2007-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1214/07-PS122","citationCount":"125","resultStr":"{\"title\":\"Proofs of the martingale FCLT\",\"authors\":\"W. Whitt\",\"doi\":\"10.1214/07-PS122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This is an expository review paper elaborating on the proof of the martingale functional central limit theorem (FCLT). This paper also reviews tightness and stochastic boundedness, highlighting one-dimensional criteria for tightness used in the proof of the martingale FCLT. This paper supplements the expository review paper Pang, Talreja and Whitt (2007) illustrating the ``martingale method'' \\nfor proving many-server heavy-traffic stochastic-process limits \\nfor queueing models, supporting diffusion-process approximations.\",\"PeriodicalId\":46216,\"journal\":{\"name\":\"Probability Surveys\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2007-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1214/07-PS122\",\"citationCount\":\"125\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probability Surveys\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/07-PS122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/07-PS122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
This is an expository review paper elaborating on the proof of the martingale functional central limit theorem (FCLT). This paper also reviews tightness and stochastic boundedness, highlighting one-dimensional criteria for tightness used in the proof of the martingale FCLT. This paper supplements the expository review paper Pang, Talreja and Whitt (2007) illustrating the ``martingale method''
for proving many-server heavy-traffic stochastic-process limits
for queueing models, supporting diffusion-process approximations.