临时建筑工程多锚拉森型板桩墙优化设计

IF 2.5 3区 工程技术 Q2 ENGINEERING, CIVIL
M. Yazici, S. N. Keskin
{"title":"临时建筑工程多锚拉森型板桩墙优化设计","authors":"M. Yazici, S. N. Keskin","doi":"10.12989/GAE.2021.27.1.001","DOIUrl":null,"url":null,"abstract":"In some construction works such as multi-basement buildings, subways, deep excavation problems are encountered. In such cases, the shoring walls are used to to prevent damage to the structures next to the excavation area and to provide a safe working environment in the excavation area. In cases where a temporary excavation support is required, sheet pile walls can be more economical comparing to the other walls in the long run due to their reusability. In the present study the analyses were carried out by changing various parametric components such as the number of anchors in vertical row, horizontal and vertical spacing amongst the anchors, anchor angle and excavation depth in LARSSEN type sheet piles constructed temporarily in medium-dense sand. In the analyses, the trapezoidal horizontal earth pressure envelope recommended by FHWA (1999) since the stress concentration occured at the anchor locations. Besides the limit values recommended by FHWA (1999) and BS (1989) was used in the analyses. In total 35488 different sheet pile wall geometry configurations were investigated. According to research results, the lowest costs occur when the horizontal spacing amongst the anchors is 3 m and the angle of the anchors with the horizontal is 150. The lowest costs were obtained when the vertical distance of the uppermost anchor to the ground surface is 3 m. Sheet pile sections with optimum cost were modeled in Plaxis 2D to run displacement analyses. Findings showed that the wall displacements were within the allowable limits commonly used in the literature.","PeriodicalId":12602,"journal":{"name":"Geomechanics and Engineering","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimum design of multi-anchored larssen type sheet pile wall for temporary construction works\",\"authors\":\"M. Yazici, S. N. Keskin\",\"doi\":\"10.12989/GAE.2021.27.1.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In some construction works such as multi-basement buildings, subways, deep excavation problems are encountered. In such cases, the shoring walls are used to to prevent damage to the structures next to the excavation area and to provide a safe working environment in the excavation area. In cases where a temporary excavation support is required, sheet pile walls can be more economical comparing to the other walls in the long run due to their reusability. In the present study the analyses were carried out by changing various parametric components such as the number of anchors in vertical row, horizontal and vertical spacing amongst the anchors, anchor angle and excavation depth in LARSSEN type sheet piles constructed temporarily in medium-dense sand. In the analyses, the trapezoidal horizontal earth pressure envelope recommended by FHWA (1999) since the stress concentration occured at the anchor locations. Besides the limit values recommended by FHWA (1999) and BS (1989) was used in the analyses. In total 35488 different sheet pile wall geometry configurations were investigated. According to research results, the lowest costs occur when the horizontal spacing amongst the anchors is 3 m and the angle of the anchors with the horizontal is 150. The lowest costs were obtained when the vertical distance of the uppermost anchor to the ground surface is 3 m. Sheet pile sections with optimum cost were modeled in Plaxis 2D to run displacement analyses. Findings showed that the wall displacements were within the allowable limits commonly used in the literature.\",\"PeriodicalId\":12602,\"journal\":{\"name\":\"Geomechanics and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomechanics and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.12989/GAE.2021.27.1.001\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/GAE.2021.27.1.001","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 1

摘要

在一些建筑工程中,如多地下室建筑、地铁等,都会遇到深基坑开挖问题。在这种情况下,使用支撑墙来防止对挖掘区域附近的结构造成破坏,并在挖掘区域内提供安全的工作环境。在需要临时开挖支持的情况下,由于板桩墙的可重复使用性,从长远来看,与其他墙相比,板桩墙可能更经济。在本研究中,通过改变在中密度砂土中临时施工的LARSSEN型板桩的各种参数分量,如纵排锚杆数、锚杆之间的水平和垂直间距、锚杆角度和开挖深度,进行了分析。在分析中,由于应力集中发生在锚固位置,因此采用FHWA(1999)推荐的梯形水平土压力包络。此外,在分析中使用了FHWA(1999)和BS(1989)推荐的极限值。总共研究了35488种不同的板桩墙几何构型。研究结果表明,锚杆水平间距为3 m,锚杆与水平夹角为150时,成本最低。当最上锚距地面垂直距离为3 m时,成本最低。采用Plaxis 2D软件对最优成本板桩截面进行建模,进行位移分析。结果表明,墙体位移在文献中常用的允许范围内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimum design of multi-anchored larssen type sheet pile wall for temporary construction works
In some construction works such as multi-basement buildings, subways, deep excavation problems are encountered. In such cases, the shoring walls are used to to prevent damage to the structures next to the excavation area and to provide a safe working environment in the excavation area. In cases where a temporary excavation support is required, sheet pile walls can be more economical comparing to the other walls in the long run due to their reusability. In the present study the analyses were carried out by changing various parametric components such as the number of anchors in vertical row, horizontal and vertical spacing amongst the anchors, anchor angle and excavation depth in LARSSEN type sheet piles constructed temporarily in medium-dense sand. In the analyses, the trapezoidal horizontal earth pressure envelope recommended by FHWA (1999) since the stress concentration occured at the anchor locations. Besides the limit values recommended by FHWA (1999) and BS (1989) was used in the analyses. In total 35488 different sheet pile wall geometry configurations were investigated. According to research results, the lowest costs occur when the horizontal spacing amongst the anchors is 3 m and the angle of the anchors with the horizontal is 150. The lowest costs were obtained when the vertical distance of the uppermost anchor to the ground surface is 3 m. Sheet pile sections with optimum cost were modeled in Plaxis 2D to run displacement analyses. Findings showed that the wall displacements were within the allowable limits commonly used in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geomechanics and Engineering
Geomechanics and Engineering ENGINEERING, CIVIL-ENGINEERING, GEOLOGICAL
CiteScore
5.20
自引率
25.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: The Geomechanics and Engineering aims at opening an easy access to the valuable source of information and providing an excellent publication channel for the global community of researchers in the geomechanics and its applications. Typical subjects covered by the journal include: - Analytical, computational, and experimental multiscale and interaction mechanics- Computational and Theoretical Geomechnics- Foundations- Tunneling- Earth Structures- Site Characterization- Soil-Structure Interactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信