斜底板预埋桩端部承载力:现场动、静力试验

IF 2.5 3区 工程技术 Q2 ENGINEERING, CIVIL
Mi-Jeong Seo, Kyungsoo Han, Jongbae Park, Kyeong-han Jeong, Jong Sub Lee
{"title":"斜底板预埋桩端部承载力:现场动、静力试验","authors":"Mi-Jeong Seo, Kyungsoo Han, Jongbae Park, Kyeong-han Jeong, Jong Sub Lee","doi":"10.12989/GAE.2021.26.3.261","DOIUrl":null,"url":null,"abstract":"The objective of this study is to investigate the effects of incorporating inclined base plates on the end bearing capacities of embedded piles by conducting dynamic pile tests and static load tests. Two types of embedded piles were prepared – conventional piles with a 50-cm-diameter flat base plate and piles with a 56-cm-diameter inclined base plate. The dynamic pile tests were conducted during pile construction, and the static load tests were conducted after curing the cement paste to investigate the end bearing capacities of the test piles. Test results indicate that the base resistances of piles with inclined base plates are greater than those of conventional piles and that the base resistances increase with an increase in the inclination angle. The increased projected area, increased contact area, extended rupture surface, and enhanced slime discharge due to the inclined base plate may result in an increase in the end bearing capacity of the pile. This study demonstrates that the end bearing capacities of the embedded piles may be maximized by incorporating inclined plates to the pile base. Thus, the pile with the inclined base plate may be effectively used for the construction of embedded piles.","PeriodicalId":12602,"journal":{"name":"Geomechanics and Engineering","volume":"26 1","pages":"261"},"PeriodicalIF":2.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"End bearing capacity of embedded pile with inclined base plate:Field dynamic and static tests\",\"authors\":\"Mi-Jeong Seo, Kyungsoo Han, Jongbae Park, Kyeong-han Jeong, Jong Sub Lee\",\"doi\":\"10.12989/GAE.2021.26.3.261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this study is to investigate the effects of incorporating inclined base plates on the end bearing capacities of embedded piles by conducting dynamic pile tests and static load tests. Two types of embedded piles were prepared – conventional piles with a 50-cm-diameter flat base plate and piles with a 56-cm-diameter inclined base plate. The dynamic pile tests were conducted during pile construction, and the static load tests were conducted after curing the cement paste to investigate the end bearing capacities of the test piles. Test results indicate that the base resistances of piles with inclined base plates are greater than those of conventional piles and that the base resistances increase with an increase in the inclination angle. The increased projected area, increased contact area, extended rupture surface, and enhanced slime discharge due to the inclined base plate may result in an increase in the end bearing capacity of the pile. This study demonstrates that the end bearing capacities of the embedded piles may be maximized by incorporating inclined plates to the pile base. Thus, the pile with the inclined base plate may be effectively used for the construction of embedded piles.\",\"PeriodicalId\":12602,\"journal\":{\"name\":\"Geomechanics and Engineering\",\"volume\":\"26 1\",\"pages\":\"261\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomechanics and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.12989/GAE.2021.26.3.261\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/GAE.2021.26.3.261","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

本文通过动桩试验和静荷载试验,探讨加入倾斜底板对内嵌桩端部承载力的影响。制备了两种类型的嵌入式桩,一种是直径为50cm的平基桩,另一种是直径为56cm的斜基桩。施工过程中进行动桩试验,水泥浆养护后进行静载试验,研究试桩端部承载力。试验结果表明,斜底板桩的桩基阻力大于常规桩基阻力,且随着倾角的增大,桩基阻力增大。由于底板倾斜,桩的投影面积增大,接触面积增大,破裂面扩大,泥浆排出量增大,可能导致桩端承载力增大。研究表明,在桩底加装斜板可使桩端承载力最大化。因此,斜底板桩可以有效地用于预埋桩的施工。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
End bearing capacity of embedded pile with inclined base plate:Field dynamic and static tests
The objective of this study is to investigate the effects of incorporating inclined base plates on the end bearing capacities of embedded piles by conducting dynamic pile tests and static load tests. Two types of embedded piles were prepared – conventional piles with a 50-cm-diameter flat base plate and piles with a 56-cm-diameter inclined base plate. The dynamic pile tests were conducted during pile construction, and the static load tests were conducted after curing the cement paste to investigate the end bearing capacities of the test piles. Test results indicate that the base resistances of piles with inclined base plates are greater than those of conventional piles and that the base resistances increase with an increase in the inclination angle. The increased projected area, increased contact area, extended rupture surface, and enhanced slime discharge due to the inclined base plate may result in an increase in the end bearing capacity of the pile. This study demonstrates that the end bearing capacities of the embedded piles may be maximized by incorporating inclined plates to the pile base. Thus, the pile with the inclined base plate may be effectively used for the construction of embedded piles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geomechanics and Engineering
Geomechanics and Engineering ENGINEERING, CIVIL-ENGINEERING, GEOLOGICAL
CiteScore
5.20
自引率
25.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: The Geomechanics and Engineering aims at opening an easy access to the valuable source of information and providing an excellent publication channel for the global community of researchers in the geomechanics and its applications. Typical subjects covered by the journal include: - Analytical, computational, and experimental multiscale and interaction mechanics- Computational and Theoretical Geomechnics- Foundations- Tunneling- Earth Structures- Site Characterization- Soil-Structure Interactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信