{"title":"裂隙岩体工作面形状优化设计","authors":"V. Mirsalimov","doi":"10.12989/GAE.2021.24.3.227","DOIUrl":null,"url":null,"abstract":"A criterion and a method for solving a problem on the prevention of mine working fracture under the action of tectonic and gravitational forces are offered. Based on minimal criterion, theoretical analysis of the definition of the optimal shape of working in the rock mass weakened by arbitrarily located rectilinear cracks was carried out. A closed system of algebraic equations allowing to minimize the stress state and stress intensity factors depending on mechanical and geometrical characteristics of the rock, is constructed. The relation between the shape of the working and the stress intensity factors and also location and sizes of the cracks is obtained. The found optimal shape of working increases load-bearing capacity of the rock.","PeriodicalId":12602,"journal":{"name":"Geomechanics and Engineering","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal design of shape of a working in cracked rock mass\",\"authors\":\"V. Mirsalimov\",\"doi\":\"10.12989/GAE.2021.24.3.227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A criterion and a method for solving a problem on the prevention of mine working fracture under the action of tectonic and gravitational forces are offered. Based on minimal criterion, theoretical analysis of the definition of the optimal shape of working in the rock mass weakened by arbitrarily located rectilinear cracks was carried out. A closed system of algebraic equations allowing to minimize the stress state and stress intensity factors depending on mechanical and geometrical characteristics of the rock, is constructed. The relation between the shape of the working and the stress intensity factors and also location and sizes of the cracks is obtained. The found optimal shape of working increases load-bearing capacity of the rock.\",\"PeriodicalId\":12602,\"journal\":{\"name\":\"Geomechanics and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomechanics and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.12989/GAE.2021.24.3.227\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/GAE.2021.24.3.227","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Optimal design of shape of a working in cracked rock mass
A criterion and a method for solving a problem on the prevention of mine working fracture under the action of tectonic and gravitational forces are offered. Based on minimal criterion, theoretical analysis of the definition of the optimal shape of working in the rock mass weakened by arbitrarily located rectilinear cracks was carried out. A closed system of algebraic equations allowing to minimize the stress state and stress intensity factors depending on mechanical and geometrical characteristics of the rock, is constructed. The relation between the shape of the working and the stress intensity factors and also location and sizes of the cracks is obtained. The found optimal shape of working increases load-bearing capacity of the rock.
期刊介绍:
The Geomechanics and Engineering aims at opening an easy access to the valuable source of information and providing an excellent publication channel for the global community of researchers in the geomechanics and its applications.
Typical subjects covered by the journal include:
- Analytical, computational, and experimental multiscale and interaction mechanics-
Computational and Theoretical Geomechnics-
Foundations-
Tunneling-
Earth Structures-
Site Characterization-
Soil-Structure Interactions