{"title":"预制混凝土办公楼隔震设计因素的验证","authors":"Dichuan Zhang, R. Fleischman, D. Lee","doi":"10.12989/EAS.2021.20.1.13","DOIUrl":null,"url":null,"abstract":"A new seismic design methodology has been developed for precast concrete diaphragms. Seismic design factors were used to be applied on top of diaphragm seismic design forces in the current code. These factors, established through extensive parametric studies, align diaphragm design strengths with different seismic performance targets. A simplified evaluation structure with a single-bay plan was used in the parametric studies. This simplified evaluation structure is reasonable and cost-effective as it can comprehensively cover structural geometries and design parameters. However, further verification and investigation are required to apply these design factors to prototype structures with realistic layouts. This paper presents diaphragm design of several precast concrete office buildings using the new design methodology. The applicability of the design factor to the office building was evaluated and verified through nonlinear time history analyses. The seismic behavior and performance of the diaphragm were investigated for the precast concrete office buildings. It was found that the design factor established for the new design methodology is applicable to the realistic precast concrete office buildings.","PeriodicalId":49080,"journal":{"name":"Earthquakes and Structures","volume":"20 1","pages":"13-27"},"PeriodicalIF":1.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Verification of diaphragm seismic design factors for precast concrete office buildings\",\"authors\":\"Dichuan Zhang, R. Fleischman, D. Lee\",\"doi\":\"10.12989/EAS.2021.20.1.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new seismic design methodology has been developed for precast concrete diaphragms. Seismic design factors were used to be applied on top of diaphragm seismic design forces in the current code. These factors, established through extensive parametric studies, align diaphragm design strengths with different seismic performance targets. A simplified evaluation structure with a single-bay plan was used in the parametric studies. This simplified evaluation structure is reasonable and cost-effective as it can comprehensively cover structural geometries and design parameters. However, further verification and investigation are required to apply these design factors to prototype structures with realistic layouts. This paper presents diaphragm design of several precast concrete office buildings using the new design methodology. The applicability of the design factor to the office building was evaluated and verified through nonlinear time history analyses. The seismic behavior and performance of the diaphragm were investigated for the precast concrete office buildings. It was found that the design factor established for the new design methodology is applicable to the realistic precast concrete office buildings.\",\"PeriodicalId\":49080,\"journal\":{\"name\":\"Earthquakes and Structures\",\"volume\":\"20 1\",\"pages\":\"13-27\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earthquakes and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.12989/EAS.2021.20.1.13\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquakes and Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/EAS.2021.20.1.13","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Verification of diaphragm seismic design factors for precast concrete office buildings
A new seismic design methodology has been developed for precast concrete diaphragms. Seismic design factors were used to be applied on top of diaphragm seismic design forces in the current code. These factors, established through extensive parametric studies, align diaphragm design strengths with different seismic performance targets. A simplified evaluation structure with a single-bay plan was used in the parametric studies. This simplified evaluation structure is reasonable and cost-effective as it can comprehensively cover structural geometries and design parameters. However, further verification and investigation are required to apply these design factors to prototype structures with realistic layouts. This paper presents diaphragm design of several precast concrete office buildings using the new design methodology. The applicability of the design factor to the office building was evaluated and verified through nonlinear time history analyses. The seismic behavior and performance of the diaphragm were investigated for the precast concrete office buildings. It was found that the design factor established for the new design methodology is applicable to the realistic precast concrete office buildings.
期刊介绍:
The Earthquakes and Structures, An International Journal, focuses on the effects of earthquakes on civil engineering structures. The journal will serve as a powerful repository of technical information and will provide a highimpact publication platform for the global community of researchers in the traditional, as well as emerging, subdisciplines of the broader earthquake engineering field. Specifically, some of the major topics covered by the Journal include: .. characterization of strong ground motions, .. quantification of earthquake demand and structural capacity, .. design of earthquake resistant structures and foundations, .. experimental and computational methods, .. seismic regulations and building codes, .. seismic hazard assessment, .. seismic risk mitigation, .. site effects and soil-structure interaction, .. assessment, repair and strengthening of existing structures, including historic structures and monuments, and .. emerging technologies including passive control technologies, structural monitoring systems, and cyberinfrastructure tools for seismic data management, experimental applications, early warning and response