古典团体作为Frobenius的补充

IF 0.3 Q4 MATHEMATICS, APPLIED
Mohammadreza Darefsheh, Hadiseh Saydi
{"title":"古典团体作为Frobenius的补充","authors":"Mohammadreza Darefsheh, Hadiseh Saydi","doi":"10.12958/adm1929","DOIUrl":null,"url":null,"abstract":"The Frobenius group G belongs to an important class of groups that more than 100 years ago was defined by F. G. Frobenius who proved that G is a semi-direct product of a normal subgroup K of G called kernel by another non-trivial subgroup H called the complement. In this case we show that a few of the classical finite groups can be Frobenius complement.","PeriodicalId":44176,"journal":{"name":"Algebra & Discrete Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classical groups as Frobenius complement\",\"authors\":\"Mohammadreza Darefsheh, Hadiseh Saydi\",\"doi\":\"10.12958/adm1929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Frobenius group G belongs to an important class of groups that more than 100 years ago was defined by F. G. Frobenius who proved that G is a semi-direct product of a normal subgroup K of G called kernel by another non-trivial subgroup H called the complement. In this case we show that a few of the classical finite groups can be Frobenius complement.\",\"PeriodicalId\":44176,\"journal\":{\"name\":\"Algebra & Discrete Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12958/adm1929\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12958/adm1929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

Frobenius群G属于100多年前由F. G. Frobenius定义的一类重要群,他证明了G是G的正规子群K(称为核)与另一个非平凡子群H(称为补)的半直积。在这种情况下,我们证明了一些经典有限群可以是Frobenius补。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classical groups as Frobenius complement
The Frobenius group G belongs to an important class of groups that more than 100 years ago was defined by F. G. Frobenius who proved that G is a semi-direct product of a normal subgroup K of G called kernel by another non-trivial subgroup H called the complement. In this case we show that a few of the classical finite groups can be Frobenius complement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebra & Discrete Mathematics
Algebra & Discrete Mathematics MATHEMATICS, APPLIED-
CiteScore
0.50
自引率
0.00%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信