{"title":"关于双无平方模的直接和","authors":"Yasser Ibrahim, M. Yousif","doi":"10.12958/adm1807","DOIUrl":null,"url":null,"abstract":"A module M is called square-free if it contains nonon-zero is omorphic submodules A and B with A∩B= 0. Dually, Mis called dual-square-free if M has no proper submodules A and B with M=A+B and M/A∼=M/B. In this paper we show that if M=⊕i∈I Mi, then M is square-free iff each Mi is square-free and Mj and ⊕j=i∈I Mi are orthogonal. Dually, if M=⊕ni=1Mi, then M is dual-square-free iff each Mi is dual-square-free, 1⩽i⩽n, and Mj and ⊕ni=jMi are factor-orthogonal. Moreover, in the in finite case, weshow that if M=⊕i∈ISi is a direct sum of non-is omorphic simple modules, then M is a dual-square-free. In particular, if M=A⊕B where A is dual-square-free and B=⊕i∈ISi is a direct sum ofnon-isomorphic simple modules, then M is dual-square-free iff A and B are factor-orthogonal; this extends an earlier result by theauthors in [2, Proposition 2.8].","PeriodicalId":44176,"journal":{"name":"Algebra & Discrete Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the direct sum of dual-square-free modules\",\"authors\":\"Yasser Ibrahim, M. Yousif\",\"doi\":\"10.12958/adm1807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A module M is called square-free if it contains nonon-zero is omorphic submodules A and B with A∩B= 0. Dually, Mis called dual-square-free if M has no proper submodules A and B with M=A+B and M/A∼=M/B. In this paper we show that if M=⊕i∈I Mi, then M is square-free iff each Mi is square-free and Mj and ⊕j=i∈I Mi are orthogonal. Dually, if M=⊕ni=1Mi, then M is dual-square-free iff each Mi is dual-square-free, 1⩽i⩽n, and Mj and ⊕ni=jMi are factor-orthogonal. Moreover, in the in finite case, weshow that if M=⊕i∈ISi is a direct sum of non-is omorphic simple modules, then M is a dual-square-free. In particular, if M=A⊕B where A is dual-square-free and B=⊕i∈ISi is a direct sum ofnon-isomorphic simple modules, then M is dual-square-free iff A and B are factor-orthogonal; this extends an earlier result by theauthors in [2, Proposition 2.8].\",\"PeriodicalId\":44176,\"journal\":{\"name\":\"Algebra & Discrete Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12958/adm1807\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12958/adm1807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A module M is called square-free if it contains nonon-zero is omorphic submodules A and B with A∩B= 0. Dually, Mis called dual-square-free if M has no proper submodules A and B with M=A+B and M/A∼=M/B. In this paper we show that if M=⊕i∈I Mi, then M is square-free iff each Mi is square-free and Mj and ⊕j=i∈I Mi are orthogonal. Dually, if M=⊕ni=1Mi, then M is dual-square-free iff each Mi is dual-square-free, 1⩽i⩽n, and Mj and ⊕ni=jMi are factor-orthogonal. Moreover, in the in finite case, weshow that if M=⊕i∈ISi is a direct sum of non-is omorphic simple modules, then M is a dual-square-free. In particular, if M=A⊕B where A is dual-square-free and B=⊕i∈ISi is a direct sum ofnon-isomorphic simple modules, then M is dual-square-free iff A and B are factor-orthogonal; this extends an earlier result by theauthors in [2, Proposition 2.8].