带符号图的在线列表着色

IF 0.3 Q4 MATHEMATICS, APPLIED
Melissa Tupper, Jacob A. White
{"title":"带符号图的在线列表着色","authors":"Melissa Tupper, Jacob A. White","doi":"10.12958/adm1806","DOIUrl":null,"url":null,"abstract":"We generalize the notion of online list coloring to signed graphs. We define the online list chromatic number of a signed graph, and prove a generalization of Brooks' Theorem. We also give necessary and sufficient conditions for a signed graph to be degree paintable, or degree choosable. Finally, we classify the 2-list-colorable and 2-list-paintable signed graphs.","PeriodicalId":44176,"journal":{"name":"Algebra & Discrete Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Online list coloring for signed graphs\",\"authors\":\"Melissa Tupper, Jacob A. White\",\"doi\":\"10.12958/adm1806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We generalize the notion of online list coloring to signed graphs. We define the online list chromatic number of a signed graph, and prove a generalization of Brooks' Theorem. We also give necessary and sufficient conditions for a signed graph to be degree paintable, or degree choosable. Finally, we classify the 2-list-colorable and 2-list-paintable signed graphs.\",\"PeriodicalId\":44176,\"journal\":{\"name\":\"Algebra & Discrete Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12958/adm1806\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12958/adm1806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们将联机列表着色的概念推广到有符号图。我们定义了有符号图的在线表色数,并证明了布鲁克斯定理的一个推广。给出了有符号图可度绘或可度选的充分必要条件。最后,我们对2表可色和2表可画的符号图进行了分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online list coloring for signed graphs
We generalize the notion of online list coloring to signed graphs. We define the online list chromatic number of a signed graph, and prove a generalization of Brooks' Theorem. We also give necessary and sufficient conditions for a signed graph to be degree paintable, or degree choosable. Finally, we classify the 2-list-colorable and 2-list-paintable signed graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebra & Discrete Mathematics
Algebra & Discrete Mathematics MATHEMATICS, APPLIED-
CiteScore
0.50
自引率
0.00%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信