{"title":"带符号图的在线列表着色","authors":"Melissa Tupper, Jacob A. White","doi":"10.12958/adm1806","DOIUrl":null,"url":null,"abstract":"We generalize the notion of online list coloring to signed graphs. We define the online list chromatic number of a signed graph, and prove a generalization of Brooks' Theorem. We also give necessary and sufficient conditions for a signed graph to be degree paintable, or degree choosable. Finally, we classify the 2-list-colorable and 2-list-paintable signed graphs.","PeriodicalId":44176,"journal":{"name":"Algebra & Discrete Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Online list coloring for signed graphs\",\"authors\":\"Melissa Tupper, Jacob A. White\",\"doi\":\"10.12958/adm1806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We generalize the notion of online list coloring to signed graphs. We define the online list chromatic number of a signed graph, and prove a generalization of Brooks' Theorem. We also give necessary and sufficient conditions for a signed graph to be degree paintable, or degree choosable. Finally, we classify the 2-list-colorable and 2-list-paintable signed graphs.\",\"PeriodicalId\":44176,\"journal\":{\"name\":\"Algebra & Discrete Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12958/adm1806\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12958/adm1806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
We generalize the notion of online list coloring to signed graphs. We define the online list chromatic number of a signed graph, and prove a generalization of Brooks' Theorem. We also give necessary and sufficient conditions for a signed graph to be degree paintable, or degree choosable. Finally, we classify the 2-list-colorable and 2-list-paintable signed graphs.