对称逆单群的进一步组合结果

IF 0.3 Q4 MATHEMATICS, APPLIED
A. Laradji, A. Umar
{"title":"对称逆单群的进一步组合结果","authors":"A. Laradji, A. Umar","doi":"10.12958/adm1793","DOIUrl":null,"url":null,"abstract":"Let In be the set of partial one-to-one transformations on the chain Xn={1,2, . . . , n} and, for each α in In, let h(α)=|Imα|, f(α)=|{x∈Xn:xα=x}| and w(α)=max(Imα). In this note, we obtain formulae involving binomial coefficients of F(n; p, m, k)=|{α ∈ In:h(α)=p∧f(α)=m∧w(α)=k}| and F(n;·, m, k)=|{α ∈ In:f(α)=m∧w(α)=k}| and analogous results on the set of partial derangements of In.","PeriodicalId":44176,"journal":{"name":"Algebra & Discrete Mathematics","volume":"14 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Further combinatorial results for the symmetric inverse monoid\",\"authors\":\"A. Laradji, A. Umar\",\"doi\":\"10.12958/adm1793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let In be the set of partial one-to-one transformations on the chain Xn={1,2, . . . , n} and, for each α in In, let h(α)=|Imα|, f(α)=|{x∈Xn:xα=x}| and w(α)=max(Imα). In this note, we obtain formulae involving binomial coefficients of F(n; p, m, k)=|{α ∈ In:h(α)=p∧f(α)=m∧w(α)=k}| and F(n;·, m, k)=|{α ∈ In:f(α)=m∧w(α)=k}| and analogous results on the set of partial derangements of In.\",\"PeriodicalId\":44176,\"journal\":{\"name\":\"Algebra & Discrete Mathematics\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12958/adm1793\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12958/adm1793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

设In为链Xn={1,2,…上的部分一对一变换的集合。n},每α,让h(α)= | Imα|,f(α)= | {x∈Xn:α= x} |和w(α)= max (Imα)。在本文中,我们得到了F(n;p m k) = |{α∈:h(α)= p∧f(α)= m∧w(α)= k} |和f (n;·m k) = |{α∈:f(α)= m∧w(α)= k} |和类似结果的部分紊乱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Further combinatorial results for the symmetric inverse monoid
Let In be the set of partial one-to-one transformations on the chain Xn={1,2, . . . , n} and, for each α in In, let h(α)=|Imα|, f(α)=|{x∈Xn:xα=x}| and w(α)=max(Imα). In this note, we obtain formulae involving binomial coefficients of F(n; p, m, k)=|{α ∈ In:h(α)=p∧f(α)=m∧w(α)=k}| and F(n;·, m, k)=|{α ∈ In:f(α)=m∧w(α)=k}| and analogous results on the set of partial derangements of In.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebra & Discrete Mathematics
Algebra & Discrete Mathematics MATHEMATICS, APPLIED-
CiteScore
0.50
自引率
0.00%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信