哈萨克常数与同构图对

IF 0.3 Q4 MATHEMATICS, APPLIED
M. Davila, Travis Hayes, Mike Krebs, Marcos Reyes
{"title":"哈萨克常数与同构图对","authors":"M. Davila, Travis Hayes, Mike Krebs, Marcos Reyes","doi":"10.12958/adm1851","DOIUrl":null,"url":null,"abstract":"Let G be a finite group, and let Γ be a subset of G. The Kazhdan constant of the pair (G,Γ) is defined to bethe maximum distance we can guarantee that an arbitrary unitvector in an arbitrary nontrivial irreducible unitary representation space of G can be moved by some element of Γ. The Kazhdanconstant relates to the expansion properties of the Cayley graph generated by G and Γ, and has been much studied in this context. Different pairs (G1,Γ1) and (G2,Γ2) may give rise to isomorphic Cayley graphs. In this paper, we investigate the question: To whatextent is the Kazhdan constant a graph invariant? In other words, if the pairs yield isomorphic Cayley graphs, must the corresponding Kazhdan constants be equal? In our main theorem, we constructan infinite family of such pairs where the Kazhdan constants areunequal. Other relevant results are presented as well.","PeriodicalId":44176,"journal":{"name":"Algebra & Discrete Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kazhdan constants and isomorphic graph pairs\",\"authors\":\"M. Davila, Travis Hayes, Mike Krebs, Marcos Reyes\",\"doi\":\"10.12958/adm1851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let G be a finite group, and let Γ be a subset of G. The Kazhdan constant of the pair (G,Γ) is defined to bethe maximum distance we can guarantee that an arbitrary unitvector in an arbitrary nontrivial irreducible unitary representation space of G can be moved by some element of Γ. The Kazhdanconstant relates to the expansion properties of the Cayley graph generated by G and Γ, and has been much studied in this context. Different pairs (G1,Γ1) and (G2,Γ2) may give rise to isomorphic Cayley graphs. In this paper, we investigate the question: To whatextent is the Kazhdan constant a graph invariant? In other words, if the pairs yield isomorphic Cayley graphs, must the corresponding Kazhdan constants be equal? In our main theorem, we constructan infinite family of such pairs where the Kazhdan constants areunequal. Other relevant results are presented as well.\",\"PeriodicalId\":44176,\"journal\":{\"name\":\"Algebra & Discrete Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12958/adm1851\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12958/adm1851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

设G是一个有限群,Γ是G的一个子集,定义对(G,Γ)的Kazhdan常数为在G的任意非平凡不可约酉表示空间中任意单位向量可以被Γ的某个元素移动的最大距离。Kazhdanconstant与G和Γ生成的Cayley图的展开性质有关,在此背景下已经进行了大量的研究。不同的对(G1,Γ1)和(G2,Γ2)可能产生同构的Cayley图。在本文中,我们研究了Kazhdan常数在多大程度上是一个图不变量?换句话说,如果这对产生同构的Cayley图,对应的Kazhdan常数必须相等吗?在我们的主要定理中,我们构造了一个无限族,其中Kazhdan常数是不等的。本文还介绍了其他相关结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kazhdan constants and isomorphic graph pairs
Let G be a finite group, and let Γ be a subset of G. The Kazhdan constant of the pair (G,Γ) is defined to bethe maximum distance we can guarantee that an arbitrary unitvector in an arbitrary nontrivial irreducible unitary representation space of G can be moved by some element of Γ. The Kazhdanconstant relates to the expansion properties of the Cayley graph generated by G and Γ, and has been much studied in this context. Different pairs (G1,Γ1) and (G2,Γ2) may give rise to isomorphic Cayley graphs. In this paper, we investigate the question: To whatextent is the Kazhdan constant a graph invariant? In other words, if the pairs yield isomorphic Cayley graphs, must the corresponding Kazhdan constants be equal? In our main theorem, we constructan infinite family of such pairs where the Kazhdan constants areunequal. Other relevant results are presented as well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebra & Discrete Mathematics
Algebra & Discrete Mathematics MATHEMATICS, APPLIED-
CiteScore
0.50
自引率
0.00%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信