莱布尼兹代数的导数的特殊子代数

IF 0.3 Q4 MATHEMATICS, APPLIED
Z. Shermatova, A. Khudoyberdiyev
{"title":"莱布尼兹代数的导数的特殊子代数","authors":"Z. Shermatova, A. Khudoyberdiyev","doi":"10.12958/adm1895","DOIUrl":null,"url":null,"abstract":"Our aim in this work is to study the central derivations of Leibniz algebras and investigate the properties of Leibniz algebras by comparing the set of central derivations with the inner derivations. We prove that, the set of all central derivations of a Leibniz algebra with non-trivial center coincide with the set of all inner derivations if and only if the Leibniz algebra is metabelian. In addition, we will show, by examples, that some statements hold for arbitrary Lie algebras, but does not hold for some Leibniz algebras.","PeriodicalId":44176,"journal":{"name":"Algebra & Discrete Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On special subalgebras of derivations of Leibniz algebras\",\"authors\":\"Z. Shermatova, A. Khudoyberdiyev\",\"doi\":\"10.12958/adm1895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our aim in this work is to study the central derivations of Leibniz algebras and investigate the properties of Leibniz algebras by comparing the set of central derivations with the inner derivations. We prove that, the set of all central derivations of a Leibniz algebra with non-trivial center coincide with the set of all inner derivations if and only if the Leibniz algebra is metabelian. In addition, we will show, by examples, that some statements hold for arbitrary Lie algebras, but does not hold for some Leibniz algebras.\",\"PeriodicalId\":44176,\"journal\":{\"name\":\"Algebra & Discrete Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12958/adm1895\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12958/adm1895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是研究莱布尼兹代数的中心导子,并通过中心导子集与内导子集的比较来研究莱布尼兹代数的性质。证明了具有非平凡中心的莱布尼兹代数的所有中心导集与所有内导集重合当且仅当该莱布尼兹代数是亚生意人的。此外,我们将通过例子证明,某些命题对任意李代数成立,但对某些莱布尼兹代数不成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On special subalgebras of derivations of Leibniz algebras
Our aim in this work is to study the central derivations of Leibniz algebras and investigate the properties of Leibniz algebras by comparing the set of central derivations with the inner derivations. We prove that, the set of all central derivations of a Leibniz algebra with non-trivial center coincide with the set of all inner derivations if and only if the Leibniz algebra is metabelian. In addition, we will show, by examples, that some statements hold for arbitrary Lie algebras, but does not hold for some Leibniz algebras.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebra & Discrete Mathematics
Algebra & Discrete Mathematics MATHEMATICS, APPLIED-
CiteScore
0.50
自引率
0.00%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信