{"title":"关于素环中的Herstein恒等式","authors":"G. Sandhu","doi":"10.12958/adm1581","DOIUrl":null,"url":null,"abstract":"A celebrated result of Herstein [10, Theorem 6] states that a ring R must be commutative if[x,y]n(x,y)=[x,y] for all x, y ∈ R, wheren (x,y)>1 is an integer. In this paper, we investigate the structure of a prime ring satisfies the identity F([x,y])n=F([x,y]) and σ([x,y])n=σ([x,y]), where F and σ are generalized derivation and automorphism of a prime ring R, respectively and n>1a fixed integer.","PeriodicalId":44176,"journal":{"name":"Algebra & Discrete Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Herstein's identity in prime rings\",\"authors\":\"G. Sandhu\",\"doi\":\"10.12958/adm1581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A celebrated result of Herstein [10, Theorem 6] states that a ring R must be commutative if[x,y]n(x,y)=[x,y] for all x, y ∈ R, wheren (x,y)>1 is an integer. In this paper, we investigate the structure of a prime ring satisfies the identity F([x,y])n=F([x,y]) and σ([x,y])n=σ([x,y]), where F and σ are generalized derivation and automorphism of a prime ring R, respectively and n>1a fixed integer.\",\"PeriodicalId\":44176,\"journal\":{\"name\":\"Algebra & Discrete Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12958/adm1581\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12958/adm1581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A celebrated result of Herstein [10, Theorem 6] states that a ring R must be commutative if[x,y]n(x,y)=[x,y] for all x, y ∈ R, wheren (x,y)>1 is an integer. In this paper, we investigate the structure of a prime ring satisfies the identity F([x,y])n=F([x,y]) and σ([x,y])n=σ([x,y]), where F and σ are generalized derivation and automorphism of a prime ring R, respectively and n>1a fixed integer.