{"title":"E(G,W,F_TG)的一些性质及其在群分裂理论中的应用","authors":"E. L. C. Fanti, L. S. Silva","doi":"10.12958/ADM1246","DOIUrl":null,"url":null,"abstract":"Let us consider W a G-set and M a Z2G-module, where G is a group. In this paper we investigate some properties of the cohomological the theory of splittings of groups. Namely, we give a proof of the invariant E(G,W,M), defined in [5] and present related results with independence of E(G,W,M) with respect to the set of G-orbit representatives in W and properties of the invariant E(G,W,FTG) establishing a relation with the end of pairs of groups e˜(G,T), defined by Kropphller and Holler in [15]. The main results give necessary conditions for G to split over a subgroup T, in the cases where M=Z2(G/T) or M=FTG.","PeriodicalId":44176,"journal":{"name":"Algebra & Discrete Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some properties of E(G,W,F_TG) and an application in the theory of splittings of groups\",\"authors\":\"E. L. C. Fanti, L. S. Silva\",\"doi\":\"10.12958/ADM1246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let us consider W a G-set and M a Z2G-module, where G is a group. In this paper we investigate some properties of the cohomological the theory of splittings of groups. Namely, we give a proof of the invariant E(G,W,M), defined in [5] and present related results with independence of E(G,W,M) with respect to the set of G-orbit representatives in W and properties of the invariant E(G,W,FTG) establishing a relation with the end of pairs of groups e˜(G,T), defined by Kropphller and Holler in [15]. The main results give necessary conditions for G to split over a subgroup T, in the cases where M=Z2(G/T) or M=FTG.\",\"PeriodicalId\":44176,\"journal\":{\"name\":\"Algebra & Discrete Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12958/ADM1246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12958/ADM1246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Some properties of E(G,W,F_TG) and an application in the theory of splittings of groups
Let us consider W a G-set and M a Z2G-module, where G is a group. In this paper we investigate some properties of the cohomological the theory of splittings of groups. Namely, we give a proof of the invariant E(G,W,M), defined in [5] and present related results with independence of E(G,W,M) with respect to the set of G-orbit representatives in W and properties of the invariant E(G,W,FTG) establishing a relation with the end of pairs of groups e˜(G,T), defined by Kropphller and Holler in [15]. The main results give necessary conditions for G to split over a subgroup T, in the cases where M=Z2(G/T) or M=FTG.