温和条件下环氧树脂、粉煤灰和石料粉合成的混合砂浆强度试验研究

IF 1.9 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
P. Sudheer, M. G. Reddy, S. Adiseshu
{"title":"温和条件下环氧树脂、粉煤灰和石料粉合成的混合砂浆强度试验研究","authors":"P. Sudheer, M. G. Reddy, S. Adiseshu","doi":"10.12989/AMR.2016.5.3.171","DOIUrl":null,"url":null,"abstract":". Fusion and characterization of bisphenol-A diglycidyl ether based thermosetting polymer mortars containing an epoxy resin, Fly ash and Rock sand are presented here for the Experimental study. The specimens have been prepared by means of an innovative process, in mild conditions, of commercial epoxy resin, Fly ash and Rock sand based paste. In this way, thermosetting based hybrid mortars characterized by a different content of normalized Fly ash and Rock sand by a homogeneous dispersion of the resin have been obtained. Once hardened, these new composite materials show improved compressive strength and toughness in respect to both the Fly ash and the Rock sand pastes since the Resin provides a more cohesive microstructure, with a reduced amount of micro cracks. The micro structural characterization allows pointing out the presence of an Interfacial Transition Zone similar to that observed in cement based mortars. A correlation between micro-structural features and mechanical properties of the mortar has also been studied.","PeriodicalId":46242,"journal":{"name":"Advances in Materials Research-An International Journal","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2016-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An experimental study on strength of hybrid mortar synthesis with epoxy resin, fly ash and quarry dust under mild condition\",\"authors\":\"P. Sudheer, M. G. Reddy, S. Adiseshu\",\"doi\":\"10.12989/AMR.2016.5.3.171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Fusion and characterization of bisphenol-A diglycidyl ether based thermosetting polymer mortars containing an epoxy resin, Fly ash and Rock sand are presented here for the Experimental study. The specimens have been prepared by means of an innovative process, in mild conditions, of commercial epoxy resin, Fly ash and Rock sand based paste. In this way, thermosetting based hybrid mortars characterized by a different content of normalized Fly ash and Rock sand by a homogeneous dispersion of the resin have been obtained. Once hardened, these new composite materials show improved compressive strength and toughness in respect to both the Fly ash and the Rock sand pastes since the Resin provides a more cohesive microstructure, with a reduced amount of micro cracks. The micro structural characterization allows pointing out the presence of an Interfacial Transition Zone similar to that observed in cement based mortars. A correlation between micro-structural features and mechanical properties of the mortar has also been studied.\",\"PeriodicalId\":46242,\"journal\":{\"name\":\"Advances in Materials Research-An International Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2016-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Materials Research-An International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12989/AMR.2016.5.3.171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Materials Research-An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12989/AMR.2016.5.3.171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

摘要

. 本文介绍了含环氧树脂、粉煤灰和岩砂的双酚a -二甘油酯基热固性聚合物砂浆的熔融和表征。在温和的条件下,用商业环氧树脂、粉煤灰和石砂为基础的膏体,通过一种创新的方法制备了这些样品。通过这种方法,通过树脂的均匀分散,获得了具有不同规整粉煤灰和岩砂含量的热固性混合砂浆。硬化后,这些新型复合材料的抗压强度和韧性都优于粉煤灰和岩砂膏体,因为树脂提供了更紧密的微观结构,减少了微裂缝的数量。微观结构表征允许指出类似于在水泥基砂浆中观察到的界面过渡区的存在。研究了砂浆的微观结构特征与力学性能之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An experimental study on strength of hybrid mortar synthesis with epoxy resin, fly ash and quarry dust under mild condition
. Fusion and characterization of bisphenol-A diglycidyl ether based thermosetting polymer mortars containing an epoxy resin, Fly ash and Rock sand are presented here for the Experimental study. The specimens have been prepared by means of an innovative process, in mild conditions, of commercial epoxy resin, Fly ash and Rock sand based paste. In this way, thermosetting based hybrid mortars characterized by a different content of normalized Fly ash and Rock sand by a homogeneous dispersion of the resin have been obtained. Once hardened, these new composite materials show improved compressive strength and toughness in respect to both the Fly ash and the Rock sand pastes since the Resin provides a more cohesive microstructure, with a reduced amount of micro cracks. The micro structural characterization allows pointing out the presence of an Interfacial Transition Zone similar to that observed in cement based mortars. A correlation between micro-structural features and mechanical properties of the mortar has also been studied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Materials Research-An International Journal
Advances in Materials Research-An International Journal MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
3.50
自引率
27.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信