{"title":"Tikhonov正则化中正则化参数的先验选择技术","authors":"M. Iqbal","doi":"10.12988/imf.2006.06023","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new strategy for a priori choice of regularization parameters in Tikhonov’s regularization, based on the conditional stability estimate for illposed inverse problems. We show that it can be applied to a wide class of inverse problems. The convergence rate of the regularized solutions is also proved.","PeriodicalId":44573,"journal":{"name":"International Journal of Applied Mathematics & Statistics","volume":"13 1","pages":"15-33"},"PeriodicalIF":0.3000,"publicationDate":"2005-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Techniques for a priori Choice of Regularizing Parameters in Tikhonov Regularization\",\"authors\":\"M. Iqbal\",\"doi\":\"10.12988/imf.2006.06023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new strategy for a priori choice of regularization parameters in Tikhonov’s regularization, based on the conditional stability estimate for illposed inverse problems. We show that it can be applied to a wide class of inverse problems. The convergence rate of the regularized solutions is also proved.\",\"PeriodicalId\":44573,\"journal\":{\"name\":\"International Journal of Applied Mathematics & Statistics\",\"volume\":\"13 1\",\"pages\":\"15-33\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2005-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mathematics & Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12988/imf.2006.06023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics & Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12988/imf.2006.06023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Techniques for a priori Choice of Regularizing Parameters in Tikhonov Regularization
In this paper, we propose a new strategy for a priori choice of regularization parameters in Tikhonov’s regularization, based on the conditional stability estimate for illposed inverse problems. We show that it can be applied to a wide class of inverse problems. The convergence rate of the regularized solutions is also proved.