Janaína Cassiano dos Santos, G. Lyra, M. Abreu, Daniel Carlos de Menezes
{"title":"月降水序列的质量分析、缺口填补和均匀性研究","authors":"Janaína Cassiano dos Santos, G. Lyra, M. Abreu, Daniel Carlos de Menezes","doi":"10.13083/reveng.v29i1.11738","DOIUrl":null,"url":null,"abstract":"The aim of this work was to propose a method for the consistency of climatic series of monthly rainfall using a supervised and unsupervised approach. The methodology was applied for the series (1961-2010) of rainfall from weather stations located in the State of Rio de Janeiro (RJ) and in the borders with the states of São Paulo, Minas Gerais and Espírito Santo with the State of Rio de Janeiro. The data were submitted to quality analysis (physical and climatic limit and, space-time tendency) and gap filling, based on simple linear regression analysis, associated with the prediction band (p < 0.05 or 0.01), in addition to the Z-score (3, 4 or 5). Next, homogeneity analysis was applied to the continuous series, using the method of cumulative residuals. The coefficients of determination (r²) between the assessed series and the reference series were greater than 0.70 for gap filling both for the supervised and unsupervised approaches. In the analysis of data homogeneity, supervised and unsupervised approaches were effective in selecting homogeneous series, in which five out of the nine final stations were homogeneous (p > 0.9). In the other series, the homogeneity break points were identified and the simple linear regression method was applied for their homogenization. The proposed method was effective to consist of the rainfall series and allows the use of these data in climate studies.","PeriodicalId":33461,"journal":{"name":"Engenharia na Agricultura","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An approach to quality analysis, gap filling and homogeneity of monthly rainfall series\",\"authors\":\"Janaína Cassiano dos Santos, G. Lyra, M. Abreu, Daniel Carlos de Menezes\",\"doi\":\"10.13083/reveng.v29i1.11738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this work was to propose a method for the consistency of climatic series of monthly rainfall using a supervised and unsupervised approach. The methodology was applied for the series (1961-2010) of rainfall from weather stations located in the State of Rio de Janeiro (RJ) and in the borders with the states of São Paulo, Minas Gerais and Espírito Santo with the State of Rio de Janeiro. The data were submitted to quality analysis (physical and climatic limit and, space-time tendency) and gap filling, based on simple linear regression analysis, associated with the prediction band (p < 0.05 or 0.01), in addition to the Z-score (3, 4 or 5). Next, homogeneity analysis was applied to the continuous series, using the method of cumulative residuals. The coefficients of determination (r²) between the assessed series and the reference series were greater than 0.70 for gap filling both for the supervised and unsupervised approaches. In the analysis of data homogeneity, supervised and unsupervised approaches were effective in selecting homogeneous series, in which five out of the nine final stations were homogeneous (p > 0.9). In the other series, the homogeneity break points were identified and the simple linear regression method was applied for their homogenization. The proposed method was effective to consist of the rainfall series and allows the use of these data in climate studies.\",\"PeriodicalId\":33461,\"journal\":{\"name\":\"Engenharia na Agricultura\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engenharia na Agricultura\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13083/reveng.v29i1.11738\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engenharia na Agricultura","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13083/reveng.v29i1.11738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An approach to quality analysis, gap filling and homogeneity of monthly rainfall series
The aim of this work was to propose a method for the consistency of climatic series of monthly rainfall using a supervised and unsupervised approach. The methodology was applied for the series (1961-2010) of rainfall from weather stations located in the State of Rio de Janeiro (RJ) and in the borders with the states of São Paulo, Minas Gerais and Espírito Santo with the State of Rio de Janeiro. The data were submitted to quality analysis (physical and climatic limit and, space-time tendency) and gap filling, based on simple linear regression analysis, associated with the prediction band (p < 0.05 or 0.01), in addition to the Z-score (3, 4 or 5). Next, homogeneity analysis was applied to the continuous series, using the method of cumulative residuals. The coefficients of determination (r²) between the assessed series and the reference series were greater than 0.70 for gap filling both for the supervised and unsupervised approaches. In the analysis of data homogeneity, supervised and unsupervised approaches were effective in selecting homogeneous series, in which five out of the nine final stations were homogeneous (p > 0.9). In the other series, the homogeneity break points were identified and the simple linear regression method was applied for their homogenization. The proposed method was effective to consist of the rainfall series and allows the use of these data in climate studies.