实对称区间矩阵的特征值:锐界与不相交

IF 0.7 4区 数学 Q2 Mathematics
Gábor Zoltan Faragó, Róbert Vajda
{"title":"实对称区间矩阵的特征值:锐界与不相交","authors":"Gábor Zoltan Faragó, Róbert Vajda","doi":"10.13001/ela.2022.7317","DOIUrl":null,"url":null,"abstract":"In this paper, the eigenvalue problem of real symmetric interval matrices is studied. First, in the case of  $2 \\times 2$ real symmetric interval matrices, all the four endpoints of the two eigenvalue intervals are determined. These are not necessarily eigenvalues of vertex matrices, but it is shown that such a real symmetric interval matrix can be constructed from the original one. Then, necessary and sufficient conditions are provided for the disjointness of eigenvalue intervals. In the general $n\\times n$ case, due to Hertz, a set of special vertex matrices determines the maximal eigenvalue and a similar statement holds for the minimal one. In a special case, namely if the right endpoints of the off-diagonal intervals are not smaller than the absolute value of the left ones, he concluded the vertex matrix of the right endpoints provides the maximal eigenvalue. Generalizing it, it is shown that in the case of real symmetric interval matrices with special sign pattern, a single vertex matrix determines one of the extremal bounds.","PeriodicalId":50540,"journal":{"name":"Electronic Journal of Linear Algebra","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On eigenvalues of real symmetric interval matrices: Sharp bounds and disjointness\",\"authors\":\"Gábor Zoltan Faragó, Róbert Vajda\",\"doi\":\"10.13001/ela.2022.7317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the eigenvalue problem of real symmetric interval matrices is studied. First, in the case of  $2 \\\\times 2$ real symmetric interval matrices, all the four endpoints of the two eigenvalue intervals are determined. These are not necessarily eigenvalues of vertex matrices, but it is shown that such a real symmetric interval matrix can be constructed from the original one. Then, necessary and sufficient conditions are provided for the disjointness of eigenvalue intervals. In the general $n\\\\times n$ case, due to Hertz, a set of special vertex matrices determines the maximal eigenvalue and a similar statement holds for the minimal one. In a special case, namely if the right endpoints of the off-diagonal intervals are not smaller than the absolute value of the left ones, he concluded the vertex matrix of the right endpoints provides the maximal eigenvalue. Generalizing it, it is shown that in the case of real symmetric interval matrices with special sign pattern, a single vertex matrix determines one of the extremal bounds.\",\"PeriodicalId\":50540,\"journal\":{\"name\":\"Electronic Journal of Linear Algebra\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Linear Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.13001/ela.2022.7317\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Linear Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2022.7317","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了实对称区间矩阵的特征值问题。首先,在$2 \乘以2$实对称区间矩阵的情况下,确定了两个特征值区间的所有四个端点。这些不一定是顶点矩阵的特征值,但证明了这样的实对称区间矩阵可以由原对称区间矩阵构造出来。然后给出了特征值区间不相交的充分必要条件。在一般$n\ * n$的情况下,由于赫兹定理,一组特殊顶点矩阵决定了最大特征值,最小特征值也适用类似的说法。在一种特殊情况下,即非对角线区间的右端点不小于左端点的绝对值,他得出右端点的顶点矩阵提供最大特征值。推广它,证明了在具有特殊符号模式的实对称区间矩阵中,一个单顶点矩阵决定一个极界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On eigenvalues of real symmetric interval matrices: Sharp bounds and disjointness
In this paper, the eigenvalue problem of real symmetric interval matrices is studied. First, in the case of  $2 \times 2$ real symmetric interval matrices, all the four endpoints of the two eigenvalue intervals are determined. These are not necessarily eigenvalues of vertex matrices, but it is shown that such a real symmetric interval matrix can be constructed from the original one. Then, necessary and sufficient conditions are provided for the disjointness of eigenvalue intervals. In the general $n\times n$ case, due to Hertz, a set of special vertex matrices determines the maximal eigenvalue and a similar statement holds for the minimal one. In a special case, namely if the right endpoints of the off-diagonal intervals are not smaller than the absolute value of the left ones, he concluded the vertex matrix of the right endpoints provides the maximal eigenvalue. Generalizing it, it is shown that in the case of real symmetric interval matrices with special sign pattern, a single vertex matrix determines one of the extremal bounds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
45
审稿时长
6-12 weeks
期刊介绍: The journal is essentially unlimited by size. Therefore, we have no restrictions on length of articles. Articles are submitted electronically. Refereeing of articles is conventional and of high standards. Posting of articles is immediate following acceptance, processing and final production approval.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信