基于统计变分公式的图像分割利用局部区域信息

IF 0.3 Q4 MATHEMATICS, APPLIED
Sung Ha Park, Chang-Ock Lee, J. Hahn
{"title":"基于统计变分公式的图像分割利用局部区域信息","authors":"Sung Ha Park, Chang-Ock Lee, J. Hahn","doi":"10.12941/JKSIAM.2014.18.129","DOIUrl":null,"url":null,"abstract":"We propose a variational segmentation model based on statistical information of intensities in an image. The model consists of both a local region-based energy and a global region-based energy in order to handle misclassification which happens in a typical statistical variational model with an assumption that an image is a mixture of two Gaussian distributions. We find local ambiguous regions where misclassification might happen due to a small difference between two Gaussian distributions. Based on statistical information restricted to the local ambiguous regions, we design a local region-based energy in order to reduce the misclassification. We suggest an algorithm to avoid the difficulty of the Euler-Lagrange equations of the proposed variational model.","PeriodicalId":41717,"journal":{"name":"Journal of the Korean Society for Industrial and Applied Mathematics","volume":"18 1","pages":"129-142"},"PeriodicalIF":0.3000,"publicationDate":"2014-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"IMAGE SEGMENTATION BASED ON THE STATISTICAL VARIATIONAL FORMULATION USING THE LOCAL REGION INFORMATION\",\"authors\":\"Sung Ha Park, Chang-Ock Lee, J. Hahn\",\"doi\":\"10.12941/JKSIAM.2014.18.129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a variational segmentation model based on statistical information of intensities in an image. The model consists of both a local region-based energy and a global region-based energy in order to handle misclassification which happens in a typical statistical variational model with an assumption that an image is a mixture of two Gaussian distributions. We find local ambiguous regions where misclassification might happen due to a small difference between two Gaussian distributions. Based on statistical information restricted to the local ambiguous regions, we design a local region-based energy in order to reduce the misclassification. We suggest an algorithm to avoid the difficulty of the Euler-Lagrange equations of the proposed variational model.\",\"PeriodicalId\":41717,\"journal\":{\"name\":\"Journal of the Korean Society for Industrial and Applied Mathematics\",\"volume\":\"18 1\",\"pages\":\"129-142\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2014-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean Society for Industrial and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12941/JKSIAM.2014.18.129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Society for Industrial and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12941/JKSIAM.2014.18.129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种基于图像强度统计信息的变分分割模型。该模型由局部区域能量和全局区域能量两部分组成,以解决典型的统计变分模型在假设图像是两个高斯分布的混合情况下出现的误分类问题。我们发现局部模糊区域,由于两个高斯分布之间的微小差异,可能会发生误分类。基于局部模糊区域的统计信息,设计了一种基于局部区域的能量来减少误分类。我们提出了一种算法来避免所提出的变分模型的欧拉-拉格朗日方程的困难。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IMAGE SEGMENTATION BASED ON THE STATISTICAL VARIATIONAL FORMULATION USING THE LOCAL REGION INFORMATION
We propose a variational segmentation model based on statistical information of intensities in an image. The model consists of both a local region-based energy and a global region-based energy in order to handle misclassification which happens in a typical statistical variational model with an assumption that an image is a mixture of two Gaussian distributions. We find local ambiguous regions where misclassification might happen due to a small difference between two Gaussian distributions. Based on statistical information restricted to the local ambiguous regions, we design a local region-based energy in order to reduce the misclassification. We suggest an algorithm to avoid the difficulty of the Euler-Lagrange equations of the proposed variational model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信