{"title":"乙醇-空气与稀释的热氧化剂在反向射流中再循环轻度燃烧","authors":"C. Cha, H. Lee, C. You, S. Hwang","doi":"10.1299/jtst.2021jtst0016","DOIUrl":null,"url":null,"abstract":"Moderate Intensity Low Oxygen Diluted (MILD) combustion has been investigated for a long time in order to minimize NOX emission still enhancing thermal efficiencies in the combustion equipment. Many researches about MILD combustion have been recently performed, but studies on MILD combustion of renewable fuel such as ethanol has been very scarce and particularly, specific information on the NOX production in ethanol-air MILD combustion has not been reported yet. In order to satisfy the condition for MILD combustion, internal recirculation is known to be essential in order to entrain the combustion products gas into air and fuel jets of combustion system. In this work, a series of numerical analysis with simplified opposed jet geometry have been done using the OPPDIF in Ansys program. Numerical analysis on how the recirculation ratio (KV) affects NOX emission in the ethanol-air combustion for MILD formation were carried out under the condition of various burnt gas dilution in reactant flow. The results show that the temperature was decreased by the increase of the recirculation ratio and the maximum heat release value became also low by the increase of the recirculation ratio. It was also found that the pyrolysis zone of the heat release was disappeared and the two heat release peaks are merged into one as combustion pattern is changed to MILD combustion mode.","PeriodicalId":17405,"journal":{"name":"Journal of Thermal Science and Technology","volume":"1 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"MILD combustion of ethanol-air with diluted hot oxidant by recirculation in opposite jet\",\"authors\":\"C. Cha, H. Lee, C. You, S. Hwang\",\"doi\":\"10.1299/jtst.2021jtst0016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Moderate Intensity Low Oxygen Diluted (MILD) combustion has been investigated for a long time in order to minimize NOX emission still enhancing thermal efficiencies in the combustion equipment. Many researches about MILD combustion have been recently performed, but studies on MILD combustion of renewable fuel such as ethanol has been very scarce and particularly, specific information on the NOX production in ethanol-air MILD combustion has not been reported yet. In order to satisfy the condition for MILD combustion, internal recirculation is known to be essential in order to entrain the combustion products gas into air and fuel jets of combustion system. In this work, a series of numerical analysis with simplified opposed jet geometry have been done using the OPPDIF in Ansys program. Numerical analysis on how the recirculation ratio (KV) affects NOX emission in the ethanol-air combustion for MILD formation were carried out under the condition of various burnt gas dilution in reactant flow. The results show that the temperature was decreased by the increase of the recirculation ratio and the maximum heat release value became also low by the increase of the recirculation ratio. It was also found that the pyrolysis zone of the heat release was disappeared and the two heat release peaks are merged into one as combustion pattern is changed to MILD combustion mode.\",\"PeriodicalId\":17405,\"journal\":{\"name\":\"Journal of Thermal Science and Technology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1299/jtst.2021jtst0016\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1299/jtst.2021jtst0016","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
MILD combustion of ethanol-air with diluted hot oxidant by recirculation in opposite jet
Moderate Intensity Low Oxygen Diluted (MILD) combustion has been investigated for a long time in order to minimize NOX emission still enhancing thermal efficiencies in the combustion equipment. Many researches about MILD combustion have been recently performed, but studies on MILD combustion of renewable fuel such as ethanol has been very scarce and particularly, specific information on the NOX production in ethanol-air MILD combustion has not been reported yet. In order to satisfy the condition for MILD combustion, internal recirculation is known to be essential in order to entrain the combustion products gas into air and fuel jets of combustion system. In this work, a series of numerical analysis with simplified opposed jet geometry have been done using the OPPDIF in Ansys program. Numerical analysis on how the recirculation ratio (KV) affects NOX emission in the ethanol-air combustion for MILD formation were carried out under the condition of various burnt gas dilution in reactant flow. The results show that the temperature was decreased by the increase of the recirculation ratio and the maximum heat release value became also low by the increase of the recirculation ratio. It was also found that the pyrolysis zone of the heat release was disappeared and the two heat release peaks are merged into one as combustion pattern is changed to MILD combustion mode.
期刊介绍:
JTST covers a variety of fields in thermal engineering including heat and mass transfer, thermodynamics, combustion, bio-heat transfer, micro- and macro-scale transport phenomena and practical thermal problems in industrial applications.