基于Levy特征选择的萤火虫多层感知机情感分析

Pub Date : 2023-01-01 DOI:10.12720/jait.14.2.342-349
D. Elangovan, V. Subedha
{"title":"基于Levy特征选择的萤火虫多层感知机情感分析","authors":"D. Elangovan, V. Subedha","doi":"10.12720/jait.14.2.342-349","DOIUrl":null,"url":null,"abstract":"—Sentimental Analysis (SA) has recently received a lot of attention in decision-making because it can extract and analyze sentiments from web-based reviews made by customers. In this case, SA has been used as a Sentiment Classification (SC) problem, in which reviews are typically labeled as positive or negative depending upon online reviews. By combining FS (Feature Selection) and categorization, this work proposes an effective SA method for internet reviews. FireFly (FF) and Levy Flights (FFL) algorithms have been used for extracting features of web-based reviews, and also the Multilayer Perceptron (MLP) framework has been used to categorize the emotions. A standard DVD database displayed the efficacy of the FF-MLP model on the testing. The outcome shows that the suggested FF-MLP system accomplishes enhanced performance with maximum sensitivity of 98.97%, specificity of 93.67%, accuracy of 97.97%, F-score of 98.75, and kappa of 93.32%.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Firefly with Levy Based Feature Selection with Multilayer Perceptron for Sentiment Analysis\",\"authors\":\"D. Elangovan, V. Subedha\",\"doi\":\"10.12720/jait.14.2.342-349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"—Sentimental Analysis (SA) has recently received a lot of attention in decision-making because it can extract and analyze sentiments from web-based reviews made by customers. In this case, SA has been used as a Sentiment Classification (SC) problem, in which reviews are typically labeled as positive or negative depending upon online reviews. By combining FS (Feature Selection) and categorization, this work proposes an effective SA method for internet reviews. FireFly (FF) and Levy Flights (FFL) algorithms have been used for extracting features of web-based reviews, and also the Multilayer Perceptron (MLP) framework has been used to categorize the emotions. A standard DVD database displayed the efficacy of the FF-MLP model on the testing. The outcome shows that the suggested FF-MLP system accomplishes enhanced performance with maximum sensitivity of 98.97%, specificity of 93.67%, accuracy of 97.97%, F-score of 98.75, and kappa of 93.32%.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12720/jait.14.2.342-349\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12720/jait.14.2.342-349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

-情感分析(SA)最近在决策中受到了很多关注,因为它可以从基于网络的客户评论中提取和分析情感。在这种情况下,SA被用作情感分类(SC)问题,其中评论通常根据在线评论被标记为积极或消极。本文将特征选择(FS)和分类相结合,提出了一种有效的网络评论分类方法。FireFly (FF)和Levy Flights (FFL)算法被用于提取基于网络的评论的特征,多层感知器(MLP)框架也被用于对情绪进行分类。一个标准的DVD数据库显示了FF-MLP模型在测试中的有效性。结果表明,该系统灵敏度为98.97%,特异性为93.67%,准确率为97.97%,F-score为98.75,kappa为93.32%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Firefly with Levy Based Feature Selection with Multilayer Perceptron for Sentiment Analysis
—Sentimental Analysis (SA) has recently received a lot of attention in decision-making because it can extract and analyze sentiments from web-based reviews made by customers. In this case, SA has been used as a Sentiment Classification (SC) problem, in which reviews are typically labeled as positive or negative depending upon online reviews. By combining FS (Feature Selection) and categorization, this work proposes an effective SA method for internet reviews. FireFly (FF) and Levy Flights (FFL) algorithms have been used for extracting features of web-based reviews, and also the Multilayer Perceptron (MLP) framework has been used to categorize the emotions. A standard DVD database displayed the efficacy of the FF-MLP model on the testing. The outcome shows that the suggested FF-MLP system accomplishes enhanced performance with maximum sensitivity of 98.97%, specificity of 93.67%, accuracy of 97.97%, F-score of 98.75, and kappa of 93.32%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信