Shugo Date, Yoshiaki Abe, Takeki Yamamoto, T. Okabe
{"title":"不同纤维性能复合材料飞机机翼流固设计分析","authors":"Shugo Date, Yoshiaki Abe, Takeki Yamamoto, T. Okabe","doi":"10.1299/jfst.2021jfst0009","DOIUrl":null,"url":null,"abstract":"This study performed an analysis for the fluid-structural design of aircraft wings composed of carbon fiber reinforced plastics (CFRPs). Specifically, the effects of carbon fibers on structural weight were evaluated. A multiscale computational framework was developed for designing CFRP wings so that even those CFRPs can be considered whose mechanical properties are not available as experimentally-measured data, thereby bridging two different scales by the following processes: 1) a microscale analysis for evaluating the mechanical properties (stiffness and strength) of unidirectional CFRP laminates and 2) a macroscale fluid-structural analysis that involves structural sizing of wingbox structures based on the mechanical properties given by the microscale analysis. To this end, five fibers were examined in this study, namely: T300, T700S, T800H, T800S, and T1100G. It was discovered that T1100G exhibited the lightest wingbox structures, followed by T800S, T800H, T700S, T300. This was mainly due to the difference in a thickness of the lower panels, where the thickness was minimized with T1100G among the five fibers, resulting from the tensile failure mode. Meanwhile, the upper panels under compressive load showed two different failure modes, namely: fiber microbuckling and skin buckling. In the region where the fiber microbuckling was dominant, the panel thickness was in order of the stiffness of the fiber, i.e., the panel made with T1100G having the highest stiffness was thicker than that made with T800S, T800H, T700S and T300, and vice versa in the region where the skin buckling was dominant. Based on the microscale analysis, the aforementioned failure mechanisms are consistent with the fact that a quasi-isotropic laminate with the fibers of higher stiffness is more resistant to tensile load and skin buckling but less resistant to compressive load.","PeriodicalId":44704,"journal":{"name":"Journal of Fluid Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Fluid-structural design analysis for composite aircraft wings with various fiber properties\",\"authors\":\"Shugo Date, Yoshiaki Abe, Takeki Yamamoto, T. Okabe\",\"doi\":\"10.1299/jfst.2021jfst0009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study performed an analysis for the fluid-structural design of aircraft wings composed of carbon fiber reinforced plastics (CFRPs). Specifically, the effects of carbon fibers on structural weight were evaluated. A multiscale computational framework was developed for designing CFRP wings so that even those CFRPs can be considered whose mechanical properties are not available as experimentally-measured data, thereby bridging two different scales by the following processes: 1) a microscale analysis for evaluating the mechanical properties (stiffness and strength) of unidirectional CFRP laminates and 2) a macroscale fluid-structural analysis that involves structural sizing of wingbox structures based on the mechanical properties given by the microscale analysis. To this end, five fibers were examined in this study, namely: T300, T700S, T800H, T800S, and T1100G. It was discovered that T1100G exhibited the lightest wingbox structures, followed by T800S, T800H, T700S, T300. This was mainly due to the difference in a thickness of the lower panels, where the thickness was minimized with T1100G among the five fibers, resulting from the tensile failure mode. Meanwhile, the upper panels under compressive load showed two different failure modes, namely: fiber microbuckling and skin buckling. In the region where the fiber microbuckling was dominant, the panel thickness was in order of the stiffness of the fiber, i.e., the panel made with T1100G having the highest stiffness was thicker than that made with T800S, T800H, T700S and T300, and vice versa in the region where the skin buckling was dominant. Based on the microscale analysis, the aforementioned failure mechanisms are consistent with the fact that a quasi-isotropic laminate with the fibers of higher stiffness is more resistant to tensile load and skin buckling but less resistant to compressive load.\",\"PeriodicalId\":44704,\"journal\":{\"name\":\"Journal of Fluid Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluid Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1299/jfst.2021jfst0009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluid Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1299/jfst.2021jfst0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
Fluid-structural design analysis for composite aircraft wings with various fiber properties
This study performed an analysis for the fluid-structural design of aircraft wings composed of carbon fiber reinforced plastics (CFRPs). Specifically, the effects of carbon fibers on structural weight were evaluated. A multiscale computational framework was developed for designing CFRP wings so that even those CFRPs can be considered whose mechanical properties are not available as experimentally-measured data, thereby bridging two different scales by the following processes: 1) a microscale analysis for evaluating the mechanical properties (stiffness and strength) of unidirectional CFRP laminates and 2) a macroscale fluid-structural analysis that involves structural sizing of wingbox structures based on the mechanical properties given by the microscale analysis. To this end, five fibers were examined in this study, namely: T300, T700S, T800H, T800S, and T1100G. It was discovered that T1100G exhibited the lightest wingbox structures, followed by T800S, T800H, T700S, T300. This was mainly due to the difference in a thickness of the lower panels, where the thickness was minimized with T1100G among the five fibers, resulting from the tensile failure mode. Meanwhile, the upper panels under compressive load showed two different failure modes, namely: fiber microbuckling and skin buckling. In the region where the fiber microbuckling was dominant, the panel thickness was in order of the stiffness of the fiber, i.e., the panel made with T1100G having the highest stiffness was thicker than that made with T800S, T800H, T700S and T300, and vice versa in the region where the skin buckling was dominant. Based on the microscale analysis, the aforementioned failure mechanisms are consistent with the fact that a quasi-isotropic laminate with the fibers of higher stiffness is more resistant to tensile load and skin buckling but less resistant to compressive load.
期刊介绍:
Journal of Fluid Science and Technology (JFST) is an international journal published by the Fluids Engineering Division in the Japan Society of Mechanical Engineers (JSME). JSME had been publishing Bulletin of the JSME (1958-1986) and JSME International Journal (1987-2006) by the continuous volume numbers. Considering the recent circumstances of the academic journals in the field of mechanical engineering, JSME reorganized the journal editorial system. Namely, JSME discontinued former International Journals and projected new publications from the divisions belonging to JSME. The Fluids Engineering Division acted quickly among all divisions and launched the premiere issue of JFST in January 2006. JFST aims at contributing to the development of fluid engineering by publishing superior papers of the scientific and technological studies in this field. The editorial committee will make all efforts for promoting strictly fair and speedy review for submitted articles. All JFST papers will be available for free at the website of J-STAGE (http://www.i-product.biz/jsme/eng/), which is hosted by Japan Science and Technology Agency (JST). Thus papers can be accessed worldwide by lead scientists and engineers. In addition, authors can express their results variedly by high-quality color drawings and pictures. JFST invites the submission of original papers on wide variety of fields related to fluid mechanics and fluid engineering. The topics to be treated should be corresponding to the following keywords of the Fluids Engineering Division of the JSME. Basic keywords include: turbulent flow; multiphase flow; non-Newtonian fluids; functional fluids; quantum and molecular dynamics; wave; acoustics; vibration; free surface flows; cavitation; fluid machinery; computational fluid dynamics (CFD); experimental fluid dynamics (EFD); Bio-fluid.