用于流量控制的超声声流执行器的研制

IF 0.7 Q4 MECHANICS
Y. Naka, Kento Inoue, Takumi Ishizaka
{"title":"用于流量控制的超声声流执行器的研制","authors":"Y. Naka, Kento Inoue, Takumi Ishizaka","doi":"10.1299/jfst.2020jfst0003","DOIUrl":null,"url":null,"abstract":"The present study aims to develop an ultrasound acoustic streaming actuator for flow control. The driving force can be derived from the continuity equation and the Navier-Stokes equation for the viscous compressible flow. Commercially available transducers are used as an ultra sound source, and the acoustic and induced flow characteristics for a single and multiple transducer configurations are examined. The sound pressure distribution indicates the strong acoustic pressure fluctuation near the transducer. For the multiple transducer cases, the region of the strong pressure fluctuation is widened due to the superposition of the waves. The distributions of the induced velocity are evaluated using particle image velocimetry. It is revealed that the maximum flow velocity is about 0.04 m/s for the single transducer case, and the maximum velocity is observed slightly downstream of the high sound intensity region. Since the driving force is proportional to the square of the sound pressure intensity, the higher flow velocity can be achieved using more transducers. A transducer array having 100 transducers has been applied in a turbulent boundary layer. It is confirmed that the flow velocity near the wall increases in the case with the control, and turbulence intensity augments by approximately 17% compared with the case without the control.","PeriodicalId":44704,"journal":{"name":"Journal of Fluid Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1299/jfst.2020jfst0003","citationCount":"4","resultStr":"{\"title\":\"Development of an ultrasound acoustic streaming actuator for flow control\",\"authors\":\"Y. Naka, Kento Inoue, Takumi Ishizaka\",\"doi\":\"10.1299/jfst.2020jfst0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present study aims to develop an ultrasound acoustic streaming actuator for flow control. The driving force can be derived from the continuity equation and the Navier-Stokes equation for the viscous compressible flow. Commercially available transducers are used as an ultra sound source, and the acoustic and induced flow characteristics for a single and multiple transducer configurations are examined. The sound pressure distribution indicates the strong acoustic pressure fluctuation near the transducer. For the multiple transducer cases, the region of the strong pressure fluctuation is widened due to the superposition of the waves. The distributions of the induced velocity are evaluated using particle image velocimetry. It is revealed that the maximum flow velocity is about 0.04 m/s for the single transducer case, and the maximum velocity is observed slightly downstream of the high sound intensity region. Since the driving force is proportional to the square of the sound pressure intensity, the higher flow velocity can be achieved using more transducers. A transducer array having 100 transducers has been applied in a turbulent boundary layer. It is confirmed that the flow velocity near the wall increases in the case with the control, and turbulence intensity augments by approximately 17% compared with the case without the control.\",\"PeriodicalId\":44704,\"journal\":{\"name\":\"Journal of Fluid Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1299/jfst.2020jfst0003\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluid Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1299/jfst.2020jfst0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluid Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1299/jfst.2020jfst0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 4

摘要

本研究旨在开发一种用于流量控制的超声声流执行器。黏性可压缩流动的驱动力可由连续性方程和Navier-Stokes方程导出。商业上可用的换能器作为超声源,并检查了单个和多个换能器配置的声学和诱导流特性。声压分布表明换能器附近存在较大的声压波动。对于多换能器的情况,由于波的叠加,强压力波动区域被加宽。用粒子图像测速法计算了感应速度的分布。结果表明,单换能器壳体的最大流速约为0.04 m/s,最大流速位于高声强区稍下游。由于驱动力与声压强的平方成正比,因此使用更多的换能器可以获得更高的流速。在紊流边界层中应用了具有100个传感器的传感器阵列。结果表明,与不加控制的情况相比,加了控制的情况下壁面附近的流速增加,湍流强度增加了约17%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of an ultrasound acoustic streaming actuator for flow control
The present study aims to develop an ultrasound acoustic streaming actuator for flow control. The driving force can be derived from the continuity equation and the Navier-Stokes equation for the viscous compressible flow. Commercially available transducers are used as an ultra sound source, and the acoustic and induced flow characteristics for a single and multiple transducer configurations are examined. The sound pressure distribution indicates the strong acoustic pressure fluctuation near the transducer. For the multiple transducer cases, the region of the strong pressure fluctuation is widened due to the superposition of the waves. The distributions of the induced velocity are evaluated using particle image velocimetry. It is revealed that the maximum flow velocity is about 0.04 m/s for the single transducer case, and the maximum velocity is observed slightly downstream of the high sound intensity region. Since the driving force is proportional to the square of the sound pressure intensity, the higher flow velocity can be achieved using more transducers. A transducer array having 100 transducers has been applied in a turbulent boundary layer. It is confirmed that the flow velocity near the wall increases in the case with the control, and turbulence intensity augments by approximately 17% compared with the case without the control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
12.50%
发文量
2
期刊介绍: Journal of Fluid Science and Technology (JFST) is an international journal published by the Fluids Engineering Division in the Japan Society of Mechanical Engineers (JSME). JSME had been publishing Bulletin of the JSME (1958-1986) and JSME International Journal (1987-2006) by the continuous volume numbers. Considering the recent circumstances of the academic journals in the field of mechanical engineering, JSME reorganized the journal editorial system. Namely, JSME discontinued former International Journals and projected new publications from the divisions belonging to JSME. The Fluids Engineering Division acted quickly among all divisions and launched the premiere issue of JFST in January 2006. JFST aims at contributing to the development of fluid engineering by publishing superior papers of the scientific and technological studies in this field. The editorial committee will make all efforts for promoting strictly fair and speedy review for submitted articles. All JFST papers will be available for free at the website of J-STAGE (http://www.i-product.biz/jsme/eng/), which is hosted by Japan Science and Technology Agency (JST). Thus papers can be accessed worldwide by lead scientists and engineers. In addition, authors can express their results variedly by high-quality color drawings and pictures. JFST invites the submission of original papers on wide variety of fields related to fluid mechanics and fluid engineering. The topics to be treated should be corresponding to the following keywords of the Fluids Engineering Division of the JSME. Basic keywords include: turbulent flow; multiphase flow; non-Newtonian fluids; functional fluids; quantum and molecular dynamics; wave; acoustics; vibration; free surface flows; cavitation; fluid machinery; computational fluid dynamics (CFD); experimental fluid dynamics (EFD); Bio-fluid.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信