Taimei Miyagawa, T. Okabe, Takuro Miyanishi, T. Kogawa, H. Murata, K. Fumoto
{"title":"由下方加热的冰浆填充的矩形腔内的熔化传热","authors":"Taimei Miyagawa, T. Okabe, Takuro Miyanishi, T. Kogawa, H. Murata, K. Fumoto","doi":"10.1299/jfst.2019jfst0021","DOIUrl":null,"url":null,"abstract":"Ice slurry is a homogeneous mixture of small ice particles and a carrier liquid. It is widely used in many fields. Previous studies have gradually clarified its heat transfer in high ice packing factor (IPF). However, only a few studies have focused on the mechanism of heat transfer with low IPF in a cavity heated from below. The objective of this study is to experimentally clarify the melting heat transfer of ice slurry in a cavity heated from below with low IPF to develop a direct contact medical cooling system. To observe the melting behavior of ice slurry, the test section was made of acrylic resin (100 mm × 60 mm× 30 mm) and a silicone rubber heater that was used for heating under constant heat flux conditions. We measured the surface temperature of the heater and the liquid thickness. We showed that the melting process can be divided into three stages. In the first stage, heat conduction dominated the process of heat transfer and the temperature of the heater rapidly increased. In the second stage, natural convection heat transfer dominated the process of heat transfer that increased the melting rate of ice slurry and decreased the temperature of the heater. In the third stage, heat conduction dominated the process of heat transfer in the concentration stratification. This led to a decrease in the melting rate and an increase in the temperature of the heater. Our result also showed that the melting process of the ice slurry is slow enough to consider it the quasi-steady state in the range of 104 < Ra∗ < 107 as compared to the development of the velocity and temperature fields.","PeriodicalId":44704,"journal":{"name":"Journal of Fluid Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1299/jfst.2019jfst0021","citationCount":"1","resultStr":"{\"title\":\"Melting heat transfer in rectangular cavity filled with ice slurry heated from below\",\"authors\":\"Taimei Miyagawa, T. Okabe, Takuro Miyanishi, T. Kogawa, H. Murata, K. Fumoto\",\"doi\":\"10.1299/jfst.2019jfst0021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ice slurry is a homogeneous mixture of small ice particles and a carrier liquid. It is widely used in many fields. Previous studies have gradually clarified its heat transfer in high ice packing factor (IPF). However, only a few studies have focused on the mechanism of heat transfer with low IPF in a cavity heated from below. The objective of this study is to experimentally clarify the melting heat transfer of ice slurry in a cavity heated from below with low IPF to develop a direct contact medical cooling system. To observe the melting behavior of ice slurry, the test section was made of acrylic resin (100 mm × 60 mm× 30 mm) and a silicone rubber heater that was used for heating under constant heat flux conditions. We measured the surface temperature of the heater and the liquid thickness. We showed that the melting process can be divided into three stages. In the first stage, heat conduction dominated the process of heat transfer and the temperature of the heater rapidly increased. In the second stage, natural convection heat transfer dominated the process of heat transfer that increased the melting rate of ice slurry and decreased the temperature of the heater. In the third stage, heat conduction dominated the process of heat transfer in the concentration stratification. This led to a decrease in the melting rate and an increase in the temperature of the heater. Our result also showed that the melting process of the ice slurry is slow enough to consider it the quasi-steady state in the range of 104 < Ra∗ < 107 as compared to the development of the velocity and temperature fields.\",\"PeriodicalId\":44704,\"journal\":{\"name\":\"Journal of Fluid Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1299/jfst.2019jfst0021\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluid Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1299/jfst.2019jfst0021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluid Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1299/jfst.2019jfst0021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
Melting heat transfer in rectangular cavity filled with ice slurry heated from below
Ice slurry is a homogeneous mixture of small ice particles and a carrier liquid. It is widely used in many fields. Previous studies have gradually clarified its heat transfer in high ice packing factor (IPF). However, only a few studies have focused on the mechanism of heat transfer with low IPF in a cavity heated from below. The objective of this study is to experimentally clarify the melting heat transfer of ice slurry in a cavity heated from below with low IPF to develop a direct contact medical cooling system. To observe the melting behavior of ice slurry, the test section was made of acrylic resin (100 mm × 60 mm× 30 mm) and a silicone rubber heater that was used for heating under constant heat flux conditions. We measured the surface temperature of the heater and the liquid thickness. We showed that the melting process can be divided into three stages. In the first stage, heat conduction dominated the process of heat transfer and the temperature of the heater rapidly increased. In the second stage, natural convection heat transfer dominated the process of heat transfer that increased the melting rate of ice slurry and decreased the temperature of the heater. In the third stage, heat conduction dominated the process of heat transfer in the concentration stratification. This led to a decrease in the melting rate and an increase in the temperature of the heater. Our result also showed that the melting process of the ice slurry is slow enough to consider it the quasi-steady state in the range of 104 < Ra∗ < 107 as compared to the development of the velocity and temperature fields.
期刊介绍:
Journal of Fluid Science and Technology (JFST) is an international journal published by the Fluids Engineering Division in the Japan Society of Mechanical Engineers (JSME). JSME had been publishing Bulletin of the JSME (1958-1986) and JSME International Journal (1987-2006) by the continuous volume numbers. Considering the recent circumstances of the academic journals in the field of mechanical engineering, JSME reorganized the journal editorial system. Namely, JSME discontinued former International Journals and projected new publications from the divisions belonging to JSME. The Fluids Engineering Division acted quickly among all divisions and launched the premiere issue of JFST in January 2006. JFST aims at contributing to the development of fluid engineering by publishing superior papers of the scientific and technological studies in this field. The editorial committee will make all efforts for promoting strictly fair and speedy review for submitted articles. All JFST papers will be available for free at the website of J-STAGE (http://www.i-product.biz/jsme/eng/), which is hosted by Japan Science and Technology Agency (JST). Thus papers can be accessed worldwide by lead scientists and engineers. In addition, authors can express their results variedly by high-quality color drawings and pictures. JFST invites the submission of original papers on wide variety of fields related to fluid mechanics and fluid engineering. The topics to be treated should be corresponding to the following keywords of the Fluids Engineering Division of the JSME. Basic keywords include: turbulent flow; multiphase flow; non-Newtonian fluids; functional fluids; quantum and molecular dynamics; wave; acoustics; vibration; free surface flows; cavitation; fluid machinery; computational fluid dynamics (CFD); experimental fluid dynamics (EFD); Bio-fluid.