μCT、MDCT和SDCT分辨率与部分体积效应的关系

Q4 Engineering
Teppei Mano, S. Hashimoto, Masafumi Machida, Y. Kiriyama
{"title":"μCT、MDCT和SDCT分辨率与部分体积效应的关系","authors":"Teppei Mano, S. Hashimoto, Masafumi Machida, Y. Kiriyama","doi":"10.1299/JBSE.20-00442","DOIUrl":null,"url":null,"abstract":"Partial volume effect is defined as the loss of accuracy for small objects caused by the low resolution of an imaging system. With low resolution computed tomography (CT), the trabecular bone and cavity are mixed and the brightness representing each of the spaces is averaged. Therefore, information regarding bony microstructure is absent. In this study, the partial volume effect was evaluated for multi-detector row CT (MDCT) and single-detector row CT (SDCT) in comparison with micro CT (µCT). Obvious and typical geometric patterns of healthy and osteoporotic bones were used to create virtual sectional images of various resolutions. Six parameters were evaluated: areal bone mineral density (aBMD), volumetric BMD (vBMD), bone volume (BV), bone mineral content (BMC), frequency distribution density of BMD (FDD) in the image, and the orientation angle of the bone. vBMD and BV values were dependent on the CT resolution, whereas aBMD and BMC values showed constant values independent of the resolution. Therefore, aBMD and BMC do not require high resolution CT and could be useful for clinically evaluating trabecular bone volume. Regarding FDD, the number of pixels with intermediate brightness increased as CT resolution decreased, and FDD converged on specific brightness representing aBMD. In addition, µCT estimated the bone orientation angle correctly, MDCT estimated the correct angle only for osteoporotic images, and SDCT was unable to estimate the angle. Many more cavities were present in the osteoporotic model than the Healthy model and the distribution of bone was sparse, which could have decreased the partial volume effect and enabled the major orientation angle of the bone to be distinguished. These findings suggest that MDCT could be useful for the clinical evaluation of osteoporotic bone structure.","PeriodicalId":39034,"journal":{"name":"Journal of Biomechanical Science and Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relationship between resolution and partial volume effect among μCT, MDCT and SDCT\",\"authors\":\"Teppei Mano, S. Hashimoto, Masafumi Machida, Y. Kiriyama\",\"doi\":\"10.1299/JBSE.20-00442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Partial volume effect is defined as the loss of accuracy for small objects caused by the low resolution of an imaging system. With low resolution computed tomography (CT), the trabecular bone and cavity are mixed and the brightness representing each of the spaces is averaged. Therefore, information regarding bony microstructure is absent. In this study, the partial volume effect was evaluated for multi-detector row CT (MDCT) and single-detector row CT (SDCT) in comparison with micro CT (µCT). Obvious and typical geometric patterns of healthy and osteoporotic bones were used to create virtual sectional images of various resolutions. Six parameters were evaluated: areal bone mineral density (aBMD), volumetric BMD (vBMD), bone volume (BV), bone mineral content (BMC), frequency distribution density of BMD (FDD) in the image, and the orientation angle of the bone. vBMD and BV values were dependent on the CT resolution, whereas aBMD and BMC values showed constant values independent of the resolution. Therefore, aBMD and BMC do not require high resolution CT and could be useful for clinically evaluating trabecular bone volume. Regarding FDD, the number of pixels with intermediate brightness increased as CT resolution decreased, and FDD converged on specific brightness representing aBMD. In addition, µCT estimated the bone orientation angle correctly, MDCT estimated the correct angle only for osteoporotic images, and SDCT was unable to estimate the angle. Many more cavities were present in the osteoporotic model than the Healthy model and the distribution of bone was sparse, which could have decreased the partial volume effect and enabled the major orientation angle of the bone to be distinguished. These findings suggest that MDCT could be useful for the clinical evaluation of osteoporotic bone structure.\",\"PeriodicalId\":39034,\"journal\":{\"name\":\"Journal of Biomechanical Science and Engineering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomechanical Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1299/JBSE.20-00442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomechanical Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1299/JBSE.20-00442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

部分体积效应是指由于成像系统的低分辨率而导致的对小物体的精度损失。使用低分辨率计算机断层扫描(CT),小梁骨和腔混合,代表每个空间的亮度是平均的。因此,缺乏有关骨骼微观结构的信息。本研究评估了多排CT (MDCT)和单排CT (SDCT)与微CT(µCT)的部分体积效应。健康和骨质疏松的骨骼明显和典型的几何模式被用来创建不同分辨率的虚拟断层图像。评估6个参数:面骨矿物质密度(aBMD)、体积骨密度(vBMD)、骨体积(BV)、骨矿物质含量(BMC)、图像中骨密度频率分布密度(FDD)和骨的取向角。vBMD和BV值与CT分辨率有关,而aBMD和BMC值与分辨率无关,呈恒定值。因此,aBMD和BMC不需要高分辨率CT,可用于临床评估小梁骨体积。对于FDD,随着CT分辨率的降低,中等亮度像素的数量增加,FDD收敛于代表aBMD的特定亮度。此外,µCT能正确估计骨取向角,MDCT仅对骨质疏松图像能正确估计角度,而SDCT无法估计角度。骨质疏松模型的空腔比健康模型多,骨分布稀疏,这可能减少了部分体积效应,使骨的主要取向角得以区分。这些结果提示MDCT可用于骨质疏松性骨结构的临床评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relationship between resolution and partial volume effect among μCT, MDCT and SDCT
Partial volume effect is defined as the loss of accuracy for small objects caused by the low resolution of an imaging system. With low resolution computed tomography (CT), the trabecular bone and cavity are mixed and the brightness representing each of the spaces is averaged. Therefore, information regarding bony microstructure is absent. In this study, the partial volume effect was evaluated for multi-detector row CT (MDCT) and single-detector row CT (SDCT) in comparison with micro CT (µCT). Obvious and typical geometric patterns of healthy and osteoporotic bones were used to create virtual sectional images of various resolutions. Six parameters were evaluated: areal bone mineral density (aBMD), volumetric BMD (vBMD), bone volume (BV), bone mineral content (BMC), frequency distribution density of BMD (FDD) in the image, and the orientation angle of the bone. vBMD and BV values were dependent on the CT resolution, whereas aBMD and BMC values showed constant values independent of the resolution. Therefore, aBMD and BMC do not require high resolution CT and could be useful for clinically evaluating trabecular bone volume. Regarding FDD, the number of pixels with intermediate brightness increased as CT resolution decreased, and FDD converged on specific brightness representing aBMD. In addition, µCT estimated the bone orientation angle correctly, MDCT estimated the correct angle only for osteoporotic images, and SDCT was unable to estimate the angle. Many more cavities were present in the osteoporotic model than the Healthy model and the distribution of bone was sparse, which could have decreased the partial volume effect and enabled the major orientation angle of the bone to be distinguished. These findings suggest that MDCT could be useful for the clinical evaluation of osteoporotic bone structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomechanical Science and Engineering
Journal of Biomechanical Science and Engineering Engineering-Biomedical Engineering
CiteScore
0.90
自引率
0.00%
发文量
18
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信