张拉平面膜结构非线性振动频率计算分析 Computation and Analysis for the Frequency of Nonlinear Vibration of Tensioned Plane Membrane Structure

黄从兵, 宦洪彬, 刘衍华, 王琦
{"title":"张拉平面膜结构非线性振动频率计算分析 Computation and Analysis for the Frequency of Nonlinear Vibration of Tensioned Plane Membrane Structure","authors":"黄从兵, 宦洪彬, 刘衍华, 王琦","doi":"10.12677/OJAV.2015.32002","DOIUrl":null,"url":null,"abstract":"利用冯∙卡门薄膜大挠度理论,结合达朗贝尔原理,建立正交异性张拉平面膜结构非线性自由振动的控制方程。然后利用伽辽金法对其进行简化,并采用同伦摄动法进行求解,得到振动频率的近似解析解。通过算例,计算了结构的非线性振动频率,并将本文结果与精确解进行比较分析。分析表明:本文所求得的近似解析解与精确解之间的最大误差小于4%。因此本文的近似解析解与精确解非常接近,且本文所得解形式更为简单,计算也更方便,有利于在工程中进行推广应用。 The nonlinear free vibration governing differential equations for the orthotropic tensioned plane membrane structure are established by Von Karman’s membrane large deflection theory and D’Alembert’s principle. Then the governing differential equations are simplified by Bubnov-Ga- lerkin method and solved by the homotopy perturbation method (HPM), and obtained the ap-proximate analytical solution of the vibration frequency. In the computational example, the non-linear vibration frequency of the structure is computed, and the results of this paper are analyzed and compared with the exact solution. The analysis shows that the approximate analytical solution obtained in this paper is very close to the exact solution (the maximum error is less than 4%), and the approximate analytical solution obtained in this paper is more simple and convenient. This is favorable for the popularization and application in engineering.","PeriodicalId":63563,"journal":{"name":"声学期刊(英文)","volume":"5 1","pages":"7-16"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"张拉平面膜结构非线性振动频率计算分析 Computation and Analysis for the Frequency of Nonlinear Vibration of Tensioned Plane Membrane Structure\",\"authors\":\"黄从兵, 宦洪彬, 刘衍华, 王琦\",\"doi\":\"10.12677/OJAV.2015.32002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"利用冯∙卡门薄膜大挠度理论,结合达朗贝尔原理,建立正交异性张拉平面膜结构非线性自由振动的控制方程。然后利用伽辽金法对其进行简化,并采用同伦摄动法进行求解,得到振动频率的近似解析解。通过算例,计算了结构的非线性振动频率,并将本文结果与精确解进行比较分析。分析表明:本文所求得的近似解析解与精确解之间的最大误差小于4%。因此本文的近似解析解与精确解非常接近,且本文所得解形式更为简单,计算也更方便,有利于在工程中进行推广应用。 The nonlinear free vibration governing differential equations for the orthotropic tensioned plane membrane structure are established by Von Karman’s membrane large deflection theory and D’Alembert’s principle. Then the governing differential equations are simplified by Bubnov-Ga- lerkin method and solved by the homotopy perturbation method (HPM), and obtained the ap-proximate analytical solution of the vibration frequency. In the computational example, the non-linear vibration frequency of the structure is computed, and the results of this paper are analyzed and compared with the exact solution. The analysis shows that the approximate analytical solution obtained in this paper is very close to the exact solution (the maximum error is less than 4%), and the approximate analytical solution obtained in this paper is more simple and convenient. This is favorable for the popularization and application in engineering.\",\"PeriodicalId\":63563,\"journal\":{\"name\":\"声学期刊(英文)\",\"volume\":\"5 1\",\"pages\":\"7-16\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"声学期刊(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.12677/OJAV.2015.32002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"声学期刊(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.12677/OJAV.2015.32002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用冯∙卡门薄膜大挠度理论,结合达朗贝尔原理,建立正交异性张拉平面膜结构非线性自由振动的控制方程。然后利用伽辽金法对其进行简化,并采用同伦摄动法进行求解,得到振动频率的近似解析解。通过算例,计算了结构的非线性振动频率,并将本文结果与精确解进行比较分析。分析表明:本文所求得的近似解析解与精确解之间的最大误差小于4%。因此本文的近似解析解与精确解非常接近,且本文所得解形式更为简单,计算也更方便,有利于在工程中进行推广应用。 The nonlinear free vibration governing differential equations for the orthotropic tensioned plane membrane structure are established by Von Karman’s membrane large deflection theory and D’Alembert’s principle. Then the governing differential equations are simplified by Bubnov-Ga- lerkin method and solved by the homotopy perturbation method (HPM), and obtained the ap-proximate analytical solution of the vibration frequency. In the computational example, the non-linear vibration frequency of the structure is computed, and the results of this paper are analyzed and compared with the exact solution. The analysis shows that the approximate analytical solution obtained in this paper is very close to the exact solution (the maximum error is less than 4%), and the approximate analytical solution obtained in this paper is more simple and convenient. This is favorable for the popularization and application in engineering.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
张拉平面膜结构非线性振动频率计算分析 Computation and Analysis for the Frequency of Nonlinear Vibration of Tensioned Plane Membrane Structure
利用冯∙卡门薄膜大挠度理论,结合达朗贝尔原理,建立正交异性张拉平面膜结构非线性自由振动的控制方程。然后利用伽辽金法对其进行简化,并采用同伦摄动法进行求解,得到振动频率的近似解析解。通过算例,计算了结构的非线性振动频率,并将本文结果与精确解进行比较分析。分析表明:本文所求得的近似解析解与精确解之间的最大误差小于4%。因此本文的近似解析解与精确解非常接近,且本文所得解形式更为简单,计算也更方便,有利于在工程中进行推广应用。 The nonlinear free vibration governing differential equations for the orthotropic tensioned plane membrane structure are established by Von Karman’s membrane large deflection theory and D’Alembert’s principle. Then the governing differential equations are simplified by Bubnov-Ga- lerkin method and solved by the homotopy perturbation method (HPM), and obtained the ap-proximate analytical solution of the vibration frequency. In the computational example, the non-linear vibration frequency of the structure is computed, and the results of this paper are analyzed and compared with the exact solution. The analysis shows that the approximate analytical solution obtained in this paper is very close to the exact solution (the maximum error is less than 4%), and the approximate analytical solution obtained in this paper is more simple and convenient. This is favorable for the popularization and application in engineering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
80
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信