{"title":"投资组合信用风险中资产相关性的置信度集","authors":"Carlos Castro","doi":"10.12804/REVISTAS.UROSARIO.EDU.CO/ECONOMIA/A.2164","DOIUrl":null,"url":null,"abstract":"Asset correlations are of critical importance in quantifying portfolio credit risk and economic capitalin financial institutions. Estimation of asset correlation with rating transition data has focusedon the point estimation of the correlation without giving any consideration to the uncertaintyaround these point estimates. In this article we use Bayesian methods to estimate a dynamicfactor model for default risk using rating data (McNeil et al., 2005; McNeil and Wendin, 2007).Bayesian methods allow us to formally incorporate human judgement in the estimation of assetcorrelation, through the prior distribution and fully characterize a confidence set for the correlations.Results indicate: i) a two factor model rather than the one factor model, as proposed bythe Basel II framework, better represents the historical default data. ii) importance of unobservedfactors in this type of models is reinforced and point out that the levels of the implied asset correlationscritically depend on the latent state variable used to capture the dynamics of default,as well as other assumptions on the statistical model. iii) the posterior distributions of the assetcorrelations show that the Basel recommended bounds, for this parameter, undermine the levelof systemic risk.","PeriodicalId":34973,"journal":{"name":"Revista de Economia del Rosario","volume":"15 1","pages":"19-58"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Confidence sets for asset correlations in portfolio credit risk\",\"authors\":\"Carlos Castro\",\"doi\":\"10.12804/REVISTAS.UROSARIO.EDU.CO/ECONOMIA/A.2164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Asset correlations are of critical importance in quantifying portfolio credit risk and economic capitalin financial institutions. Estimation of asset correlation with rating transition data has focusedon the point estimation of the correlation without giving any consideration to the uncertaintyaround these point estimates. In this article we use Bayesian methods to estimate a dynamicfactor model for default risk using rating data (McNeil et al., 2005; McNeil and Wendin, 2007).Bayesian methods allow us to formally incorporate human judgement in the estimation of assetcorrelation, through the prior distribution and fully characterize a confidence set for the correlations.Results indicate: i) a two factor model rather than the one factor model, as proposed bythe Basel II framework, better represents the historical default data. ii) importance of unobservedfactors in this type of models is reinforced and point out that the levels of the implied asset correlationscritically depend on the latent state variable used to capture the dynamics of default,as well as other assumptions on the statistical model. iii) the posterior distributions of the assetcorrelations show that the Basel recommended bounds, for this parameter, undermine the levelof systemic risk.\",\"PeriodicalId\":34973,\"journal\":{\"name\":\"Revista de Economia del Rosario\",\"volume\":\"15 1\",\"pages\":\"19-58\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista de Economia del Rosario\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12804/REVISTAS.UROSARIO.EDU.CO/ECONOMIA/A.2164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Economics, Econometrics and Finance\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de Economia del Rosario","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12804/REVISTAS.UROSARIO.EDU.CO/ECONOMIA/A.2164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 9
摘要
资产相关性对于量化金融机构的投资组合信用风险和经济资本具有至关重要的意义。基于评级转移数据的资产相关性估计主要集中在相关性的点估计上,而没有考虑这些点估计周围的不确定性。在本文中,我们使用贝叶斯方法使用评级数据来估计违约风险的动态因素模型(McNeil等人,2005;McNeil and Wendin, 2007)。贝叶斯方法允许我们通过先验分布正式地将人类判断纳入资产相关性的估计中,并充分表征相关性的置信集。结果表明:1)与巴塞尔协议II框架提出的单因素模型相比,双因素模型更能代表历史违约数据。Ii)强化了这类模型中未观察到因素的重要性,并指出隐含资产的水平与用于捕获违约动态的潜在状态变量以及统计模型上的其他假设相关。iii)资产相关性的后验分布表明,该参数的巴塞尔建议界限削弱了系统风险水平。
Confidence sets for asset correlations in portfolio credit risk
Asset correlations are of critical importance in quantifying portfolio credit risk and economic capitalin financial institutions. Estimation of asset correlation with rating transition data has focusedon the point estimation of the correlation without giving any consideration to the uncertaintyaround these point estimates. In this article we use Bayesian methods to estimate a dynamicfactor model for default risk using rating data (McNeil et al., 2005; McNeil and Wendin, 2007).Bayesian methods allow us to formally incorporate human judgement in the estimation of assetcorrelation, through the prior distribution and fully characterize a confidence set for the correlations.Results indicate: i) a two factor model rather than the one factor model, as proposed bythe Basel II framework, better represents the historical default data. ii) importance of unobservedfactors in this type of models is reinforced and point out that the levels of the implied asset correlationscritically depend on the latent state variable used to capture the dynamics of default,as well as other assumptions on the statistical model. iii) the posterior distributions of the assetcorrelations show that the Basel recommended bounds, for this parameter, undermine the levelof systemic risk.