{"title":"基于形态计量学分析的硬岩地形地下水发育","authors":"I. Dar, K. Sankar, Mithas Ahmad Dar","doi":"10.1306/EG.06011212003","DOIUrl":null,"url":null,"abstract":"The occurrence of several water crises in India over the years has resulted in the formulation of strategies that promote sustainable development of groundwater resources. For such planning efforts, the evaluation of groundwater recharge zones is a vital component of the water balance equation. Therefore, this study presents a systematic scientific analysis of various morphometric parameters relating to groundwater flow in hard rock terrain. The numerical classification scheme presented herein constitutes an integrated approach that shows how to leverage basic watershed information to evaluate prospective sites and measures at various scales for the purposes of water resources development and management. We have used our morphometric analysis of the Mamundiyar watershed of southern India to demonstrate the use of this classification scheme as a helpful tool in the watershed development planning process. The results of this relative ranking of Mamundiyar subbasins, using various parameters that are ultimately indicative of surficial rock permeability, show the usefulness of this classification scheme in identifying suitable rainfall infiltration sites. Together with an evaluation of the various hydrogeologic conditions in a given basin, this type of numerical classification scheme can be developed and applied to properly identify recharge sites in the planning stages of sustainable watershed development, as well as in already active watersheds, perhaps where extractive industries are working or certain land use practices exist, to evaluate potential relationships between hydrogeologic regimes and these anthropogenic activities.","PeriodicalId":11706,"journal":{"name":"Environmental Geosciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1306/EG.06011212003","citationCount":"2","resultStr":"{\"title\":\"Groundwater development in hardrock terrain using morphometric analysis\",\"authors\":\"I. Dar, K. Sankar, Mithas Ahmad Dar\",\"doi\":\"10.1306/EG.06011212003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The occurrence of several water crises in India over the years has resulted in the formulation of strategies that promote sustainable development of groundwater resources. For such planning efforts, the evaluation of groundwater recharge zones is a vital component of the water balance equation. Therefore, this study presents a systematic scientific analysis of various morphometric parameters relating to groundwater flow in hard rock terrain. The numerical classification scheme presented herein constitutes an integrated approach that shows how to leverage basic watershed information to evaluate prospective sites and measures at various scales for the purposes of water resources development and management. We have used our morphometric analysis of the Mamundiyar watershed of southern India to demonstrate the use of this classification scheme as a helpful tool in the watershed development planning process. The results of this relative ranking of Mamundiyar subbasins, using various parameters that are ultimately indicative of surficial rock permeability, show the usefulness of this classification scheme in identifying suitable rainfall infiltration sites. Together with an evaluation of the various hydrogeologic conditions in a given basin, this type of numerical classification scheme can be developed and applied to properly identify recharge sites in the planning stages of sustainable watershed development, as well as in already active watersheds, perhaps where extractive industries are working or certain land use practices exist, to evaluate potential relationships between hydrogeologic regimes and these anthropogenic activities.\",\"PeriodicalId\":11706,\"journal\":{\"name\":\"Environmental Geosciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1306/EG.06011212003\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1306/EG.06011212003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1306/EG.06011212003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
Groundwater development in hardrock terrain using morphometric analysis
The occurrence of several water crises in India over the years has resulted in the formulation of strategies that promote sustainable development of groundwater resources. For such planning efforts, the evaluation of groundwater recharge zones is a vital component of the water balance equation. Therefore, this study presents a systematic scientific analysis of various morphometric parameters relating to groundwater flow in hard rock terrain. The numerical classification scheme presented herein constitutes an integrated approach that shows how to leverage basic watershed information to evaluate prospective sites and measures at various scales for the purposes of water resources development and management. We have used our morphometric analysis of the Mamundiyar watershed of southern India to demonstrate the use of this classification scheme as a helpful tool in the watershed development planning process. The results of this relative ranking of Mamundiyar subbasins, using various parameters that are ultimately indicative of surficial rock permeability, show the usefulness of this classification scheme in identifying suitable rainfall infiltration sites. Together with an evaluation of the various hydrogeologic conditions in a given basin, this type of numerical classification scheme can be developed and applied to properly identify recharge sites in the planning stages of sustainable watershed development, as well as in already active watersheds, perhaps where extractive industries are working or certain land use practices exist, to evaluate potential relationships between hydrogeologic regimes and these anthropogenic activities.