密歇根盆地寒武系西蒙山砂岩中二氧化碳的地质封存:区域储存能力、地点特征和大规模注入可行性

Q2 Earth and Planetary Sciences
D. Barnes, D. Bacon, Stephen Kelley
{"title":"密歇根盆地寒武系西蒙山砂岩中二氧化碳的地质封存:区域储存能力、地点特征和大规模注入可行性","authors":"D. Barnes, D. Bacon, Stephen Kelley","doi":"10.1306/EG.05080909009","DOIUrl":null,"url":null,"abstract":"The Mount Simon Sandstone (Cambrian) is recognized as an important deep saline reservoir with potential to serve as a target for geological sequestration in the Midwest, United States. The Mount Simon Sandstone in Michigan consists primarily of sandy clastics and grades upward into the more argillaceous Eau Claire Formation, which serves as a regional confining zone. The Mount Simon Sandstone lies at depths from about 914 m (3000 ft) to more than 4572 m (15,000 ft) in the Michigan Basin and ranges in thickness from more than 396 m (1300 ft) to near zero adjacent to basement highs. The Mount Simon Sandstone has variable reservoir quality characteristics dependent on sedimentary facies variations and depth-related diagenesis. On the basis of well-log-derived net porosity from wells in the Michigan Basin, estimates of total geological sequestration capacity were determined to be in excess of 29 billion metric tons (Gt). Most of this capacity is located in the southwestern part of the state. Numerical simulations of carbon dioxide (CO2) injection were conducted using the subsurface transport over multiple phases-water-CO2-salt (STOMP-WCS) simulator code to assess the potential for geologic sequestration into the Mount Simon saline reservoir in the area of Holland, Ottawa County, Michigan. At this locality, the reservoir is more than 260 m (850 ft) thick and has a minimum of 30 m (100 ft) of net porosity. The simulation used a CO2 injection period of 20 yr at a rate of 600,000 metric tons (t)/yr, followed by an equilibration period of 280 yr, for a total of 300 yr. After 20 yr, the total amount of CO2 injected is 12 million metric tons (Mt); after 300 yr, 9.8 Mt is modeled to remain as a free-phase (nonentrapped) supercritical CO2, 0.7 Mt is capillary-entrapped (residual) supercritical CO2, and 1.5 Mt dissolved into the brine. The injected CO2 spread to an area with a radius of 1.8 km (1.12 mi) after 20 yr of injection at a single well and to an area with a radius of 3.8 km (2.36 mi) after 300 yr. The low-permeability Eau Claire retards the upward migration of CO2. Pressures during injection at the bottom of the cap rock (1540.5-m [5054-ft] depth) are well below the fracture pressure limit of 27.9 MPa (4046.6 psi), assuming a fracture pressure gradient of 0.018 MPa/m (0.8 psi/ft) caused by the high permeability of the Mount Simon Sandstone.","PeriodicalId":11706,"journal":{"name":"Environmental Geosciences","volume":"16 1","pages":"163-183"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1306/EG.05080909009","citationCount":"55","resultStr":"{\"title\":\"Geological sequestration of carbon dioxide in the Cambrian Mount Simon Sandstone: Regional storage capacity, site characterization, and large-scale injection feasibility, Michigan Basin\",\"authors\":\"D. Barnes, D. Bacon, Stephen Kelley\",\"doi\":\"10.1306/EG.05080909009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Mount Simon Sandstone (Cambrian) is recognized as an important deep saline reservoir with potential to serve as a target for geological sequestration in the Midwest, United States. The Mount Simon Sandstone in Michigan consists primarily of sandy clastics and grades upward into the more argillaceous Eau Claire Formation, which serves as a regional confining zone. The Mount Simon Sandstone lies at depths from about 914 m (3000 ft) to more than 4572 m (15,000 ft) in the Michigan Basin and ranges in thickness from more than 396 m (1300 ft) to near zero adjacent to basement highs. The Mount Simon Sandstone has variable reservoir quality characteristics dependent on sedimentary facies variations and depth-related diagenesis. On the basis of well-log-derived net porosity from wells in the Michigan Basin, estimates of total geological sequestration capacity were determined to be in excess of 29 billion metric tons (Gt). Most of this capacity is located in the southwestern part of the state. Numerical simulations of carbon dioxide (CO2) injection were conducted using the subsurface transport over multiple phases-water-CO2-salt (STOMP-WCS) simulator code to assess the potential for geologic sequestration into the Mount Simon saline reservoir in the area of Holland, Ottawa County, Michigan. At this locality, the reservoir is more than 260 m (850 ft) thick and has a minimum of 30 m (100 ft) of net porosity. The simulation used a CO2 injection period of 20 yr at a rate of 600,000 metric tons (t)/yr, followed by an equilibration period of 280 yr, for a total of 300 yr. After 20 yr, the total amount of CO2 injected is 12 million metric tons (Mt); after 300 yr, 9.8 Mt is modeled to remain as a free-phase (nonentrapped) supercritical CO2, 0.7 Mt is capillary-entrapped (residual) supercritical CO2, and 1.5 Mt dissolved into the brine. The injected CO2 spread to an area with a radius of 1.8 km (1.12 mi) after 20 yr of injection at a single well and to an area with a radius of 3.8 km (2.36 mi) after 300 yr. The low-permeability Eau Claire retards the upward migration of CO2. Pressures during injection at the bottom of the cap rock (1540.5-m [5054-ft] depth) are well below the fracture pressure limit of 27.9 MPa (4046.6 psi), assuming a fracture pressure gradient of 0.018 MPa/m (0.8 psi/ft) caused by the high permeability of the Mount Simon Sandstone.\",\"PeriodicalId\":11706,\"journal\":{\"name\":\"Environmental Geosciences\",\"volume\":\"16 1\",\"pages\":\"163-183\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1306/EG.05080909009\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1306/EG.05080909009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1306/EG.05080909009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 55

摘要

Mount Simon砂岩(寒武系)被认为是美国中西部一个重要的深层含盐储层,具有潜在的地质封存目标。密歇根州的西蒙山砂岩主要由砂质碎屑组成,向上递进到更多的泥质Eau Claire组,这是一个区域限制带。西蒙山砂岩位于密歇根盆地,深度从914米(3000英尺)到4572米(15000英尺),厚度从396米(1300英尺)到接近零。西蒙山砂岩储集物性特征随沉积相变化和深度相关成岩作用而变化。根据密歇根盆地油井的测井数据得出的净孔隙度,总地质封存能力估计超过290亿公吨。这些产能中的大部分位于该州的西南部。利用multi - phase -water-CO2-salt (STOMP-WCS)模拟代码对二氧化碳(CO2)注入进行了数值模拟,以评估地质封存到密歇根州渥太华县Holland地区的Mount Simon盐储层的潜力。在该地区,储层厚度超过260米(850英尺),净孔隙度至少为30米(100英尺)。模拟使用的二氧化碳注入期为20年,速率为600,000公吨/年,然后是280年的平衡期,总共为300年。20年后,注入的二氧化碳总量为1200万公吨;300年后,980万吨仍以自由相(未捕获的)超临界二氧化碳的形式存在,70万吨为毛细管捕获的(残余的)超临界二氧化碳,150万吨溶解在盐水中。单井注入20年后,注入的二氧化碳扩散到半径为1.8 km (1.12 mi)的区域,300年后扩散到半径为3.8 km (2.36 mi)的区域。低渗透的Eau Claire阻碍了二氧化碳的向上运移。假设西蒙山砂岩的高渗透率导致的裂缝压力梯度为0.018 MPa/m (0.8 psi/ft),那么盖层底部(1540.5 m [5054-ft]深度)的注入压力远低于27.9 MPa (4046.6 psi)的裂缝压力极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geological sequestration of carbon dioxide in the Cambrian Mount Simon Sandstone: Regional storage capacity, site characterization, and large-scale injection feasibility, Michigan Basin
The Mount Simon Sandstone (Cambrian) is recognized as an important deep saline reservoir with potential to serve as a target for geological sequestration in the Midwest, United States. The Mount Simon Sandstone in Michigan consists primarily of sandy clastics and grades upward into the more argillaceous Eau Claire Formation, which serves as a regional confining zone. The Mount Simon Sandstone lies at depths from about 914 m (3000 ft) to more than 4572 m (15,000 ft) in the Michigan Basin and ranges in thickness from more than 396 m (1300 ft) to near zero adjacent to basement highs. The Mount Simon Sandstone has variable reservoir quality characteristics dependent on sedimentary facies variations and depth-related diagenesis. On the basis of well-log-derived net porosity from wells in the Michigan Basin, estimates of total geological sequestration capacity were determined to be in excess of 29 billion metric tons (Gt). Most of this capacity is located in the southwestern part of the state. Numerical simulations of carbon dioxide (CO2) injection were conducted using the subsurface transport over multiple phases-water-CO2-salt (STOMP-WCS) simulator code to assess the potential for geologic sequestration into the Mount Simon saline reservoir in the area of Holland, Ottawa County, Michigan. At this locality, the reservoir is more than 260 m (850 ft) thick and has a minimum of 30 m (100 ft) of net porosity. The simulation used a CO2 injection period of 20 yr at a rate of 600,000 metric tons (t)/yr, followed by an equilibration period of 280 yr, for a total of 300 yr. After 20 yr, the total amount of CO2 injected is 12 million metric tons (Mt); after 300 yr, 9.8 Mt is modeled to remain as a free-phase (nonentrapped) supercritical CO2, 0.7 Mt is capillary-entrapped (residual) supercritical CO2, and 1.5 Mt dissolved into the brine. The injected CO2 spread to an area with a radius of 1.8 km (1.12 mi) after 20 yr of injection at a single well and to an area with a radius of 3.8 km (2.36 mi) after 300 yr. The low-permeability Eau Claire retards the upward migration of CO2. Pressures during injection at the bottom of the cap rock (1540.5-m [5054-ft] depth) are well below the fracture pressure limit of 27.9 MPa (4046.6 psi), assuming a fracture pressure gradient of 0.018 MPa/m (0.8 psi/ft) caused by the high permeability of the Mount Simon Sandstone.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Geosciences
Environmental Geosciences Earth and Planetary Sciences-Earth and Planetary Sciences (all)
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信