{"title":"浸没边界法电渗透流动的计算模拟","authors":"C. Saleel, A. Shaija, S. Jayaraj","doi":"10.1260/1759-3093.2.2-3.129","DOIUrl":null,"url":null,"abstract":"Several fluid movement techniques in microchannel have been discussed in the past, the most recent technique is by applying an electric field to a fluid enclosed in a microchannel (viz electroosmotic flow). An immersed boundary method (IBM) is a methodology to deal with a body in the computational domain having complex or simple boundary which does not necessarily have to conform a Cartesian grid. The present study is an IBM based numerical investigation of two-dimensional transient electroosmotic flows in a microchannel populated with rectangular blocks to constrict the flow which eventually aims a short mixing channel. Electroosmotic potential, leads to the formation of Electrical Double Layer (EDL), is governed by Poisson-Boltzmann equation and is solved by PSOR method. The hyperbolic non-linearity associated with this equation is suitably tackled by the Taylor series expansion (neglecting the higher order terms). The electroosmotic flow is governed by the continuity equation impregnated with a mass so...","PeriodicalId":89942,"journal":{"name":"International journal of micro-nano scale transport","volume":"2 1","pages":"129-150"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational Simulation of Electroosmotic Flow Using Immersed Boundary Method\",\"authors\":\"C. Saleel, A. Shaija, S. Jayaraj\",\"doi\":\"10.1260/1759-3093.2.2-3.129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several fluid movement techniques in microchannel have been discussed in the past, the most recent technique is by applying an electric field to a fluid enclosed in a microchannel (viz electroosmotic flow). An immersed boundary method (IBM) is a methodology to deal with a body in the computational domain having complex or simple boundary which does not necessarily have to conform a Cartesian grid. The present study is an IBM based numerical investigation of two-dimensional transient electroosmotic flows in a microchannel populated with rectangular blocks to constrict the flow which eventually aims a short mixing channel. Electroosmotic potential, leads to the formation of Electrical Double Layer (EDL), is governed by Poisson-Boltzmann equation and is solved by PSOR method. The hyperbolic non-linearity associated with this equation is suitably tackled by the Taylor series expansion (neglecting the higher order terms). The electroosmotic flow is governed by the continuity equation impregnated with a mass so...\",\"PeriodicalId\":89942,\"journal\":{\"name\":\"International journal of micro-nano scale transport\",\"volume\":\"2 1\",\"pages\":\"129-150\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of micro-nano scale transport\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1260/1759-3093.2.2-3.129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of micro-nano scale transport","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1260/1759-3093.2.2-3.129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Computational Simulation of Electroosmotic Flow Using Immersed Boundary Method
Several fluid movement techniques in microchannel have been discussed in the past, the most recent technique is by applying an electric field to a fluid enclosed in a microchannel (viz electroosmotic flow). An immersed boundary method (IBM) is a methodology to deal with a body in the computational domain having complex or simple boundary which does not necessarily have to conform a Cartesian grid. The present study is an IBM based numerical investigation of two-dimensional transient electroosmotic flows in a microchannel populated with rectangular blocks to constrict the flow which eventually aims a short mixing channel. Electroosmotic potential, leads to the formation of Electrical Double Layer (EDL), is governed by Poisson-Boltzmann equation and is solved by PSOR method. The hyperbolic non-linearity associated with this equation is suitably tackled by the Taylor series expansion (neglecting the higher order terms). The electroosmotic flow is governed by the continuity equation impregnated with a mass so...