基于深度迁移学习的垃圾分类研究

皓元 封
{"title":"基于深度迁移学习的垃圾分类研究","authors":"皓元 封","doi":"10.12677/jisp.2023.123029","DOIUrl":null,"url":null,"abstract":"To address the problems of poor manual detection environment, error-prone, difficulty and low efficiency of garbage classification, a method of domestic garbage classification using deep transfer learning is proposed. Firstly, image datasets for garbage classification are constructed while data augmentation, secondly, deep convolutional neural networks ResNeXt and MobileNetV2 are built to fine-tune the network transfer parameters to suit the garbage classification task, and finally, the effects of network freezing layers and learning rate on the network structure caused by different magnitudes are explored under the convolutional neural networks based on deep migra-封皓元","PeriodicalId":69487,"journal":{"name":"图像与信号处理","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Transfer Learning-Based Waste Classification Research\",\"authors\":\"皓元 封\",\"doi\":\"10.12677/jisp.2023.123029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To address the problems of poor manual detection environment, error-prone, difficulty and low efficiency of garbage classification, a method of domestic garbage classification using deep transfer learning is proposed. Firstly, image datasets for garbage classification are constructed while data augmentation, secondly, deep convolutional neural networks ResNeXt and MobileNetV2 are built to fine-tune the network transfer parameters to suit the garbage classification task, and finally, the effects of network freezing layers and learning rate on the network structure caused by different magnitudes are explored under the convolutional neural networks based on deep migra-封皓元\",\"PeriodicalId\":69487,\"journal\":{\"name\":\"图像与信号处理\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"图像与信号处理\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.12677/jisp.2023.123029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"图像与信号处理","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.12677/jisp.2023.123029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Transfer Learning-Based Waste Classification Research
To address the problems of poor manual detection environment, error-prone, difficulty and low efficiency of garbage classification, a method of domestic garbage classification using deep transfer learning is proposed. Firstly, image datasets for garbage classification are constructed while data augmentation, secondly, deep convolutional neural networks ResNeXt and MobileNetV2 are built to fine-tune the network transfer parameters to suit the garbage classification task, and finally, the effects of network freezing layers and learning rate on the network structure caused by different magnitudes are explored under the convolutional neural networks based on deep migra-封皓元
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
154
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信