{"title":"星载多波束相控阵天线关键技术研究","authors":"子卿 崔","doi":"10.12677/ja.2022.113007","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a method of using the choke structure to improve the transmittance isolation of active multi-beam phased array antenna, which restricts the application of satellite-borne multi-beam phased array antenna, and propose a hybrid integration method of multi-channel chip and compound chip for the high-density integration technology of multi-beam radio frequency channel. The method of combining main and auxiliary heat dissipation surfaces and pre-embedded heat pipe in the side panel is proposed for efficient space-borne thermal control. All the technologies","PeriodicalId":64652,"journal":{"name":"天线学报","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Key Technologies of Satellite-Borne Muti-Beam Phased Array Antenna\",\"authors\":\"子卿 崔\",\"doi\":\"10.12677/ja.2022.113007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a method of using the choke structure to improve the transmittance isolation of active multi-beam phased array antenna, which restricts the application of satellite-borne multi-beam phased array antenna, and propose a hybrid integration method of multi-channel chip and compound chip for the high-density integration technology of multi-beam radio frequency channel. The method of combining main and auxiliary heat dissipation surfaces and pre-embedded heat pipe in the side panel is proposed for efficient space-borne thermal control. All the technologies\",\"PeriodicalId\":64652,\"journal\":{\"name\":\"天线学报\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"天线学报\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.12677/ja.2022.113007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"天线学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.12677/ja.2022.113007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Research on Key Technologies of Satellite-Borne Muti-Beam Phased Array Antenna
In this paper, we propose a method of using the choke structure to improve the transmittance isolation of active multi-beam phased array antenna, which restricts the application of satellite-borne multi-beam phased array antenna, and propose a hybrid integration method of multi-channel chip and compound chip for the high-density integration technology of multi-beam radio frequency channel. The method of combining main and auxiliary heat dissipation surfaces and pre-embedded heat pipe in the side panel is proposed for efficient space-borne thermal control. All the technologies