{"title":"基于数值微分的物理信息神经网络方法在非矩形区域中的应用","authors":"豪 康","doi":"10.12677/ijfd.2023.112007","DOIUrl":null,"url":null,"abstract":"Physics-Informed Neural Networks (PINN) is a novel data-driven numerical framework for solving","PeriodicalId":66025,"journal":{"name":"流体动力学","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Physics Informed Neural Net-work Method Based on Numerical Differentiation in Non-Rectangular Regions\",\"authors\":\"豪 康\",\"doi\":\"10.12677/ijfd.2023.112007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Physics-Informed Neural Networks (PINN) is a novel data-driven numerical framework for solving\",\"PeriodicalId\":66025,\"journal\":{\"name\":\"流体动力学\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"流体动力学\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.12677/ijfd.2023.112007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"流体动力学","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.12677/ijfd.2023.112007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}