六顶点和XXZ模型的Bethe分析:阐述

IF 1.3 Q2 STATISTICS & PROBABILITY
H. Duminil-Copin, Maxime Gagnebin, Matan Harel, I. Manolescu, V. Tassion
{"title":"六顶点和XXZ模型的Bethe分析:阐述","authors":"H. Duminil-Copin, Maxime Gagnebin, Matan Harel, I. Manolescu, V. Tassion","doi":"10.1214/17-PS292","DOIUrl":null,"url":null,"abstract":"In this paper, we review a few known facts on the coordinate Bethe ansatz. We present a detailed construction of the Bethe ansatz vector (psi) and energy (Lambda), which satisfy (V psi = Lambda psi), where (V) is the transfer matrix of the six-vertex model on a finite square lattice with periodic boundary conditions for weights (a= b=1) and (c > 0). We also show that the same vector (psi) satisfies (H psi = E psi), where (H) is the Hamiltonian of the XXZ model (which is the model for which the Bethe ansatz was first developed), with a value (E) computed explicitly. \n \nVariants of this approach have become central techniques for the study of exactly solvable statistical mechanics models in both the physics and mathematics communities. Our aim in this paper is to provide a \npedagogically-minded exposition of this construction, aimed at a mathematical audience. It also provides the opportunity to introduce the notation and framework which will be used in a subsequent paper by the authors [5] that amounts to proving that the random-cluster model on (mathbb{Z}^{2}) with cluster weight (q >4) exhibits a first-order phase transition. \n \n","PeriodicalId":46216,"journal":{"name":"Probability Surveys","volume":"15 1","pages":"102-130"},"PeriodicalIF":1.3000,"publicationDate":"2016-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1214/17-PS292","citationCount":"22","resultStr":"{\"title\":\"The Bethe ansatz for the six-vertex and XXZ models: An exposition\",\"authors\":\"H. Duminil-Copin, Maxime Gagnebin, Matan Harel, I. Manolescu, V. Tassion\",\"doi\":\"10.1214/17-PS292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we review a few known facts on the coordinate Bethe ansatz. We present a detailed construction of the Bethe ansatz vector (psi) and energy (Lambda), which satisfy (V psi = Lambda psi), where (V) is the transfer matrix of the six-vertex model on a finite square lattice with periodic boundary conditions for weights (a= b=1) and (c > 0). We also show that the same vector (psi) satisfies (H psi = E psi), where (H) is the Hamiltonian of the XXZ model (which is the model for which the Bethe ansatz was first developed), with a value (E) computed explicitly. \\n \\nVariants of this approach have become central techniques for the study of exactly solvable statistical mechanics models in both the physics and mathematics communities. Our aim in this paper is to provide a \\npedagogically-minded exposition of this construction, aimed at a mathematical audience. It also provides the opportunity to introduce the notation and framework which will be used in a subsequent paper by the authors [5] that amounts to proving that the random-cluster model on (mathbb{Z}^{2}) with cluster weight (q >4) exhibits a first-order phase transition. \\n \\n\",\"PeriodicalId\":46216,\"journal\":{\"name\":\"Probability Surveys\",\"volume\":\"15 1\",\"pages\":\"102-130\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2016-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1214/17-PS292\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probability Surveys\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/17-PS292\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/17-PS292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 22

摘要

在本文中,我们回顾了一些已知的关于贝氏坐标的事实。我们提出一个详细的建设是拟设向量(psi)和能源(λ),满足(Vψ=λpsi), (V)在哪里six-vertex的传递矩阵模型在一个有限的平方晶格周期性边界条件的权重(a = b = 1)和(c > 0)。我们还表明,相同的向量(psi)满足(Hψ= E psi),在(H)的哈密顿XXZ模型(该模型是拟设的第一次开发),与一个值(E)显式计算。这种方法的变体已经成为物理学和数学界研究精确可解统计力学模型的核心技术。我们在本文中的目的是提供一个教学思想的阐述这种结构,针对数学观众。它还提供了一个机会来介绍将在作者[5]的后续论文中使用的符号和框架,这相当于证明(mathbb{Z}^{2})上具有簇权(q >4)的随机聚类模型呈现一阶相变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Bethe ansatz for the six-vertex and XXZ models: An exposition
In this paper, we review a few known facts on the coordinate Bethe ansatz. We present a detailed construction of the Bethe ansatz vector (psi) and energy (Lambda), which satisfy (V psi = Lambda psi), where (V) is the transfer matrix of the six-vertex model on a finite square lattice with periodic boundary conditions for weights (a= b=1) and (c > 0). We also show that the same vector (psi) satisfies (H psi = E psi), where (H) is the Hamiltonian of the XXZ model (which is the model for which the Bethe ansatz was first developed), with a value (E) computed explicitly. Variants of this approach have become central techniques for the study of exactly solvable statistical mechanics models in both the physics and mathematics communities. Our aim in this paper is to provide a pedagogically-minded exposition of this construction, aimed at a mathematical audience. It also provides the opportunity to introduce the notation and framework which will be used in a subsequent paper by the authors [5] that amounts to proving that the random-cluster model on (mathbb{Z}^{2}) with cluster weight (q >4) exhibits a first-order phase transition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Probability Surveys
Probability Surveys STATISTICS & PROBABILITY-
CiteScore
4.70
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信