{"title":"总变差的多元近似,II:离散正态近似","authors":"A. Barbour, M. Luczak, A. Xia","doi":"10.1214/17-AOP1205","DOIUrl":null,"url":null,"abstract":"The paper applies the theory developed in Part I to the discrete normal approximation in total variation of random vectors in ${\\mathbb Z}^d$. We illustrate the use of the method for sums of independent integer valued random vectors, and for random vectors exhibiting an exchangeable pair. We conclude with an application to random colourings of regular graphs.","PeriodicalId":50763,"journal":{"name":"Annals of Probability","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2016-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1214/17-AOP1205","citationCount":"17","resultStr":"{\"title\":\"Multivariate approximation in total variation, II: Discrete normal approximation\",\"authors\":\"A. Barbour, M. Luczak, A. Xia\",\"doi\":\"10.1214/17-AOP1205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper applies the theory developed in Part I to the discrete normal approximation in total variation of random vectors in ${\\\\mathbb Z}^d$. We illustrate the use of the method for sums of independent integer valued random vectors, and for random vectors exhibiting an exchangeable pair. We conclude with an application to random colourings of regular graphs.\",\"PeriodicalId\":50763,\"journal\":{\"name\":\"Annals of Probability\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2016-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1214/17-AOP1205\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/17-AOP1205\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/17-AOP1205","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Multivariate approximation in total variation, II: Discrete normal approximation
The paper applies the theory developed in Part I to the discrete normal approximation in total variation of random vectors in ${\mathbb Z}^d$. We illustrate the use of the method for sums of independent integer valued random vectors, and for random vectors exhibiting an exchangeable pair. We conclude with an application to random colourings of regular graphs.
期刊介绍:
The Annals of Probability publishes research papers in modern probability theory, its relations to other areas of mathematics, and its applications in the physical and biological sciences. Emphasis is on importance, interest, and originality – formal novelty and correctness are not sufficient for publication. The Annals will also publish authoritative review papers and surveys of areas in vigorous development.