交错和有线均匀跨越森林

IF 2.1 1区 数学 Q1 STATISTICS & PROBABILITY
Tom Hutchcroft
{"title":"交错和有线均匀跨越森林","authors":"Tom Hutchcroft","doi":"10.1214/17-AOP1203","DOIUrl":null,"url":null,"abstract":"We extend the Aldous-Broder algorithm to generate the wired uniform spanning forests (WUSFs) of infinite, transient graphs. We do this by replacing the simple random walk in the classical algorithm with Sznitman's random interlacement process. We then apply this algorithm to study the WUSF, showing that every component of the WUSF is one-ended almost surely in any graph satisfying a certain weak anchored isoperimetric condition, that the number of `excessive ends' in the WUSF is non-random in any graph, and also that every component of the WUSF is one-ended almost surely in any transient unimodular random rooted graph. The first two of these results answer positively two questions of Lyons, Morris and Schramm, while the third extends a recent result of the author. \nFinally, we construct a counterexample showing that almost sure one-endedness of WUSF components is not preserved by rough isometries of the underlying graph, answering negatively a further question of Lyons, Morris and Schramm.","PeriodicalId":50763,"journal":{"name":"Annals of Probability","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2015-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1214/17-AOP1203","citationCount":"29","resultStr":"{\"title\":\"Interlacements and the wired uniform spanning forest\",\"authors\":\"Tom Hutchcroft\",\"doi\":\"10.1214/17-AOP1203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We extend the Aldous-Broder algorithm to generate the wired uniform spanning forests (WUSFs) of infinite, transient graphs. We do this by replacing the simple random walk in the classical algorithm with Sznitman's random interlacement process. We then apply this algorithm to study the WUSF, showing that every component of the WUSF is one-ended almost surely in any graph satisfying a certain weak anchored isoperimetric condition, that the number of `excessive ends' in the WUSF is non-random in any graph, and also that every component of the WUSF is one-ended almost surely in any transient unimodular random rooted graph. The first two of these results answer positively two questions of Lyons, Morris and Schramm, while the third extends a recent result of the author. \\nFinally, we construct a counterexample showing that almost sure one-endedness of WUSF components is not preserved by rough isometries of the underlying graph, answering negatively a further question of Lyons, Morris and Schramm.\",\"PeriodicalId\":50763,\"journal\":{\"name\":\"Annals of Probability\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2015-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1214/17-AOP1203\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/17-AOP1203\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/17-AOP1203","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 29

摘要

我们扩展了Aldous-Broder算法来生成无限暂态图的有线均匀生成森林(WUSFs)。我们将经典算法中的简单随机游走替换为Sznitman随机交错过程。应用该算法对WUSF进行了研究,结果表明,在满足一定弱锚定等周条件的任意图中,WUSF的每个分量几乎肯定是一端的,在任意图中,WUSF的“过端”数都是非随机的,在任意暂态单模随机根图中,WUSF的每个分量几乎肯定是一端的。前两个结果肯定地回答了里昂、莫里斯和施拉姆的两个问题,而第三个结果扩展了作者最近的一个结果。最后,我们构造了一个反例,表明底层图的粗糙等边不保留WUSF组件的几乎肯定的一端性,否定地回答了Lyons, Morris和Schramm的进一步问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interlacements and the wired uniform spanning forest
We extend the Aldous-Broder algorithm to generate the wired uniform spanning forests (WUSFs) of infinite, transient graphs. We do this by replacing the simple random walk in the classical algorithm with Sznitman's random interlacement process. We then apply this algorithm to study the WUSF, showing that every component of the WUSF is one-ended almost surely in any graph satisfying a certain weak anchored isoperimetric condition, that the number of `excessive ends' in the WUSF is non-random in any graph, and also that every component of the WUSF is one-ended almost surely in any transient unimodular random rooted graph. The first two of these results answer positively two questions of Lyons, Morris and Schramm, while the third extends a recent result of the author. Finally, we construct a counterexample showing that almost sure one-endedness of WUSF components is not preserved by rough isometries of the underlying graph, answering negatively a further question of Lyons, Morris and Schramm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Probability
Annals of Probability 数学-统计学与概率论
CiteScore
4.60
自引率
8.70%
发文量
61
审稿时长
6-12 weeks
期刊介绍: The Annals of Probability publishes research papers in modern probability theory, its relations to other areas of mathematics, and its applications in the physical and biological sciences. Emphasis is on importance, interest, and originality – formal novelty and correctness are not sufficient for publication. The Annals will also publish authoritative review papers and surveys of areas in vigorous development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信