度量半群中的hoffmann-jorgensen不等式

IF 2.1 1区 数学 Q1 STATISTICS & PROBABILITY
A. Khare, B. Rajaratnam
{"title":"度量半群中的hoffmann-jorgensen不等式","authors":"A. Khare, B. Rajaratnam","doi":"10.1214/16-AOP1160","DOIUrl":null,"url":null,"abstract":"We prove a refinement of the inequality by Hoffmann-Jorgensen that is significant for three reasons. First, our result improves on the state-of-the-art even for real-valued random variables. Second, the result unifies several versions in the Banach space literature, including those by Johnson and Schechtman Ann. Probab. 17 (1989) 789-808], Klass and Nowicki Ann. Probab. 28 (2000) 851-862], and Hitczenko and Montgomery-Smith Ann. Probab. 29 (2001) 447-466]. Finally, we show that the Hoffmann-Jorgensen inequality (including our generalized version) holds not only in Banach spaces but more generally, in a very primitive mathematical framework required to state the inequality: a metric semigroup G. This includes normed linear spaces as well as all compact, discrete or (connected) abelian Lie groups.","PeriodicalId":50763,"journal":{"name":"Annals of Probability","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2016-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1214/16-AOP1160","citationCount":"10","resultStr":"{\"title\":\"THE HOFFMANN-JORGENSEN INEQUALITY IN METRIC SEMIGROUPS\",\"authors\":\"A. Khare, B. Rajaratnam\",\"doi\":\"10.1214/16-AOP1160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a refinement of the inequality by Hoffmann-Jorgensen that is significant for three reasons. First, our result improves on the state-of-the-art even for real-valued random variables. Second, the result unifies several versions in the Banach space literature, including those by Johnson and Schechtman Ann. Probab. 17 (1989) 789-808], Klass and Nowicki Ann. Probab. 28 (2000) 851-862], and Hitczenko and Montgomery-Smith Ann. Probab. 29 (2001) 447-466]. Finally, we show that the Hoffmann-Jorgensen inequality (including our generalized version) holds not only in Banach spaces but more generally, in a very primitive mathematical framework required to state the inequality: a metric semigroup G. This includes normed linear spaces as well as all compact, discrete or (connected) abelian Lie groups.\",\"PeriodicalId\":50763,\"journal\":{\"name\":\"Annals of Probability\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2016-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1214/16-AOP1160\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/16-AOP1160\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/16-AOP1160","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 10

摘要

我们证明了Hoffmann-Jorgensen对不等式的改进,这有三个重要的原因。首先,即使对于实值随机变量,我们的结果也比最先进的结果有所改进。其次,该结果统一了巴拿赫空间文献中的几个版本,包括Johnson和Schechtman Ann的版本。[p] . 17(1989) 789-808。[约28 (2000)851-862],Hitczenko和Montgomery-Smith Ann。约29(2001)447-466]。最后,我们证明了Hoffmann-Jorgensen不等式(包括我们的推广版本)不仅在Banach空间中成立,而且更普遍地在一个非常原始的数学框架中成立:一个度量半群g。这包括赋范线性空间以及所有紧的、离散的或(连通的)阿贝尔李群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
THE HOFFMANN-JORGENSEN INEQUALITY IN METRIC SEMIGROUPS
We prove a refinement of the inequality by Hoffmann-Jorgensen that is significant for three reasons. First, our result improves on the state-of-the-art even for real-valued random variables. Second, the result unifies several versions in the Banach space literature, including those by Johnson and Schechtman Ann. Probab. 17 (1989) 789-808], Klass and Nowicki Ann. Probab. 28 (2000) 851-862], and Hitczenko and Montgomery-Smith Ann. Probab. 29 (2001) 447-466]. Finally, we show that the Hoffmann-Jorgensen inequality (including our generalized version) holds not only in Banach spaces but more generally, in a very primitive mathematical framework required to state the inequality: a metric semigroup G. This includes normed linear spaces as well as all compact, discrete or (connected) abelian Lie groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Probability
Annals of Probability 数学-统计学与概率论
CiteScore
4.60
自引率
8.70%
发文量
61
审稿时长
6-12 weeks
期刊介绍: The Annals of Probability publishes research papers in modern probability theory, its relations to other areas of mathematics, and its applications in the physical and biological sciences. Emphasis is on importance, interest, and originality – formal novelty and correctness are not sufficient for publication. The Annals will also publish authoritative review papers and surveys of areas in vigorous development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信