{"title":"随机图的非回溯谱:群落检测和非正则Ramanujan图","authors":"C. Bordenave, M. Lelarge, L. Massoulié","doi":"10.1214/16-AOP1142","DOIUrl":null,"url":null,"abstract":"A nonbacktracking walk on a graph is a directed path such that no edge is the inverse of its preceding edge. The nonbacktracking matrix of a graph is indexed by its directed edges and can be used to count nonbacktracking walks of a given length. It has been used recently in the context of community detection and has appeared previously in connection with the Ihara zeta function and in some generalizations of Ramanujan graphs. In this work, we study the largest eigenvalues of the nonbacktracking matrix of the Erdős–Renyi random graph and of the stochastic block model in the regime where the number of edges is proportional to the number of vertices. Our results confirm the “spectral redemption conjecture” in the symmetric case and show that community detection can be made on the basis of the leading eigenvectors above the feasibility threshold.","PeriodicalId":50763,"journal":{"name":"Annals of Probability","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1214/16-AOP1142","citationCount":"55","resultStr":"{\"title\":\"Nonbacktracking spectrum of random graphs: Community detection and nonregular Ramanujan graphs\",\"authors\":\"C. Bordenave, M. Lelarge, L. Massoulié\",\"doi\":\"10.1214/16-AOP1142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A nonbacktracking walk on a graph is a directed path such that no edge is the inverse of its preceding edge. The nonbacktracking matrix of a graph is indexed by its directed edges and can be used to count nonbacktracking walks of a given length. It has been used recently in the context of community detection and has appeared previously in connection with the Ihara zeta function and in some generalizations of Ramanujan graphs. In this work, we study the largest eigenvalues of the nonbacktracking matrix of the Erdős–Renyi random graph and of the stochastic block model in the regime where the number of edges is proportional to the number of vertices. Our results confirm the “spectral redemption conjecture” in the symmetric case and show that community detection can be made on the basis of the leading eigenvectors above the feasibility threshold.\",\"PeriodicalId\":50763,\"journal\":{\"name\":\"Annals of Probability\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1214/16-AOP1142\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/16-AOP1142\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/16-AOP1142","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Nonbacktracking spectrum of random graphs: Community detection and nonregular Ramanujan graphs
A nonbacktracking walk on a graph is a directed path such that no edge is the inverse of its preceding edge. The nonbacktracking matrix of a graph is indexed by its directed edges and can be used to count nonbacktracking walks of a given length. It has been used recently in the context of community detection and has appeared previously in connection with the Ihara zeta function and in some generalizations of Ramanujan graphs. In this work, we study the largest eigenvalues of the nonbacktracking matrix of the Erdős–Renyi random graph and of the stochastic block model in the regime where the number of edges is proportional to the number of vertices. Our results confirm the “spectral redemption conjecture” in the symmetric case and show that community detection can be made on the basis of the leading eigenvectors above the feasibility threshold.
期刊介绍:
The Annals of Probability publishes research papers in modern probability theory, its relations to other areas of mathematics, and its applications in the physical and biological sciences. Emphasis is on importance, interest, and originality – formal novelty and correctness are not sufficient for publication. The Annals will also publish authoritative review papers and surveys of areas in vigorous development.