马尔可夫粗糙路径的尾部估计

IF 2.1 1区 数学 Q1 STATISTICS & PROBABILITY
T. Cass, M. Ogrodnik
{"title":"马尔可夫粗糙路径的尾部估计","authors":"T. Cass, M. Ogrodnik","doi":"10.1214/16-AOP1117","DOIUrl":null,"url":null,"abstract":"We work in the context of Markovian rough paths associated to a class of uniformly subelliptic Dirichlet forms ([26]) and prove a better-than-exponential tail estimate for the accumulated local p-variation functional, which has been introduced and studied in [17]. We comment on the significance of these estimates to a range of currently-studied problems, including the recent results of Ni Hao [32], and Chevyrev and Lyons [18].","PeriodicalId":50763,"journal":{"name":"Annals of Probability","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2014-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1214/16-AOP1117","citationCount":"11","resultStr":"{\"title\":\"Tail estimates for Markovian rough paths\",\"authors\":\"T. Cass, M. Ogrodnik\",\"doi\":\"10.1214/16-AOP1117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We work in the context of Markovian rough paths associated to a class of uniformly subelliptic Dirichlet forms ([26]) and prove a better-than-exponential tail estimate for the accumulated local p-variation functional, which has been introduced and studied in [17]. We comment on the significance of these estimates to a range of currently-studied problems, including the recent results of Ni Hao [32], and Chevyrev and Lyons [18].\",\"PeriodicalId\":50763,\"journal\":{\"name\":\"Annals of Probability\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2014-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1214/16-AOP1117\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/16-AOP1117\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/16-AOP1117","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 11

摘要

我们在与一类一致亚椭圆狄利克雷形式([26])相关的马尔可夫粗糙路径的背景下工作,并证明了[17]中介绍和研究的累积局部p变分泛函的优于指数的尾部估计。我们评论了这些估计对一系列当前研究问题的重要性,包括你好[32]和Chevyrev和Lyons[18]的最新结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tail estimates for Markovian rough paths
We work in the context of Markovian rough paths associated to a class of uniformly subelliptic Dirichlet forms ([26]) and prove a better-than-exponential tail estimate for the accumulated local p-variation functional, which has been introduced and studied in [17]. We comment on the significance of these estimates to a range of currently-studied problems, including the recent results of Ni Hao [32], and Chevyrev and Lyons [18].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Probability
Annals of Probability 数学-统计学与概率论
CiteScore
4.60
自引率
8.70%
发文量
61
审稿时长
6-12 weeks
期刊介绍: The Annals of Probability publishes research papers in modern probability theory, its relations to other areas of mathematics, and its applications in the physical and biological sciences. Emphasis is on importance, interest, and originality – formal novelty and correctness are not sufficient for publication. The Annals will also publish authoritative review papers and surveys of areas in vigorous development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信