吉布斯采样器和其他非费勒过程的混合和击打时间

IF 0.6 Q3 MATHEMATICS
R. Anderson, Haosui Duanmu, Aaron Smith
{"title":"吉布斯采样器和其他非费勒过程的混合和击打时间","authors":"R. Anderson, Haosui Duanmu, Aaron Smith","doi":"10.1215/00192082-9421096","DOIUrl":null,"url":null,"abstract":"The hitting and mixing times are two often-studied quantities associated with Markov chains. Yuval Peres, Perla Sousi and Roberto Oliveira showed that the mixing times and “worst-case” hitting times of reversible Markov chains on finite state spaces are “equivalent”—that is, equal up to some universal multiplicative constant. We have extended this strong connection between mixing and hitting times to Markov chains satisfying the strong Feller property in an earlier work. In the present paper, we further extend the results to include Metropolis–Hastings chains, the popular Gibbs sampler (from statistics), and Glauber dynamics (from statistical physics), which make “one-dimensional” updates and thus do not satisfy the strong Feller property. We also apply this result to obtain decomposition bounds for such Markov chains. Our main tools come from nonstandard analysis.","PeriodicalId":56298,"journal":{"name":"Illinois Journal of Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Mixing and hitting times for Gibbs samplers and other non-Feller processes\",\"authors\":\"R. Anderson, Haosui Duanmu, Aaron Smith\",\"doi\":\"10.1215/00192082-9421096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The hitting and mixing times are two often-studied quantities associated with Markov chains. Yuval Peres, Perla Sousi and Roberto Oliveira showed that the mixing times and “worst-case” hitting times of reversible Markov chains on finite state spaces are “equivalent”—that is, equal up to some universal multiplicative constant. We have extended this strong connection between mixing and hitting times to Markov chains satisfying the strong Feller property in an earlier work. In the present paper, we further extend the results to include Metropolis–Hastings chains, the popular Gibbs sampler (from statistics), and Glauber dynamics (from statistical physics), which make “one-dimensional” updates and thus do not satisfy the strong Feller property. We also apply this result to obtain decomposition bounds for such Markov chains. Our main tools come from nonstandard analysis.\",\"PeriodicalId\":56298,\"journal\":{\"name\":\"Illinois Journal of Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Illinois Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1215/00192082-9421096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Illinois Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/00192082-9421096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

撞击和混合时间是与马尔可夫链相关的两个经常被研究的量。Yuval Peres, Perla Sousi和Roberto Oliveira证明了有限状态空间上可逆马尔可夫链的混合时间和“最坏情况”碰撞时间是“等价的”——也就是说,等于某个通用乘法常数。在早期的工作中,我们已经将混合和撞击时间之间的这种强联系推广到满足强Feller性质的马尔可夫链上。在本文中,我们进一步将结果扩展到包括Metropolis-Hastings链,流行的Gibbs采样器(来自统计学)和Glauber动力学(来自统计物理学),它们使“一维”更新,因此不满足强Feller性质。我们也应用这个结果得到了这类马尔可夫链的分解界。我们的主要工具来自非标准分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mixing and hitting times for Gibbs samplers and other non-Feller processes
The hitting and mixing times are two often-studied quantities associated with Markov chains. Yuval Peres, Perla Sousi and Roberto Oliveira showed that the mixing times and “worst-case” hitting times of reversible Markov chains on finite state spaces are “equivalent”—that is, equal up to some universal multiplicative constant. We have extended this strong connection between mixing and hitting times to Markov chains satisfying the strong Feller property in an earlier work. In the present paper, we further extend the results to include Metropolis–Hastings chains, the popular Gibbs sampler (from statistics), and Glauber dynamics (from statistical physics), which make “one-dimensional” updates and thus do not satisfy the strong Feller property. We also apply this result to obtain decomposition bounds for such Markov chains. Our main tools come from nonstandard analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
18
期刊介绍: IJM strives to publish high quality research papers in all areas of mainstream mathematics that are of interest to a substantial number of its readers. IJM is published by Duke University Press on behalf of the Department of Mathematics at the University of Illinois at Urbana-Champaign.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信