q函数的加权不等式

IF 0.6 Q3 MATHEMATICS
T. Gałązka, A. Osȩkowski
{"title":"q函数的加权不等式","authors":"T. Gałązka, A. Osȩkowski","doi":"10.1215/00192082-8946105","DOIUrl":null,"url":null,"abstract":"Let f be a martingale on an arbitrary atomic probability space equipped with a tree-like structure and let S(f, q) denote the associated q-function. The paper is devoted to weighted Lp-estimates c−1 p,q,w‖S(f, q)‖Lp(w) ≤ ‖f‖Lp(w) ≤ Cp,q,w‖S(f, q)‖Lp(w), 1 ≤ p <∞, for Muckenhoupt weights. Using the combination of the theory of sparse operators, extrapolation and Bellman function method, we identify the optimal dependence of the constants cp,q,w and Cp,q,w on the Ap characteristics of the weights involved.","PeriodicalId":56298,"journal":{"name":"Illinois Journal of Mathematics","volume":"-1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weighted inequalities for q-functions\",\"authors\":\"T. Gałązka, A. Osȩkowski\",\"doi\":\"10.1215/00192082-8946105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let f be a martingale on an arbitrary atomic probability space equipped with a tree-like structure and let S(f, q) denote the associated q-function. The paper is devoted to weighted Lp-estimates c−1 p,q,w‖S(f, q)‖Lp(w) ≤ ‖f‖Lp(w) ≤ Cp,q,w‖S(f, q)‖Lp(w), 1 ≤ p <∞, for Muckenhoupt weights. Using the combination of the theory of sparse operators, extrapolation and Bellman function method, we identify the optimal dependence of the constants cp,q,w and Cp,q,w on the Ap characteristics of the weights involved.\",\"PeriodicalId\":56298,\"journal\":{\"name\":\"Illinois Journal of Mathematics\",\"volume\":\"-1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Illinois Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1215/00192082-8946105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Illinois Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/00192082-8946105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设f为具有树状结构的任意原子概率空间上的鞅,设S(f, q)表示相应的q函数。本文研究了Muckenhoupt权值的加权Lp估计c−1 p,q,w‖S(f, q)‖Lp(w)≤‖f‖Lp(w)≤Cp,q,w‖S(f, q)‖Lp(w), 1≤p <∞。结合稀疏算子理论、外推法和Bellman函数法,我们确定了cp,q,w和cp,q,w常数对权重Ap特征的最优依赖关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weighted inequalities for q-functions
Let f be a martingale on an arbitrary atomic probability space equipped with a tree-like structure and let S(f, q) denote the associated q-function. The paper is devoted to weighted Lp-estimates c−1 p,q,w‖S(f, q)‖Lp(w) ≤ ‖f‖Lp(w) ≤ Cp,q,w‖S(f, q)‖Lp(w), 1 ≤ p <∞, for Muckenhoupt weights. Using the combination of the theory of sparse operators, extrapolation and Bellman function method, we identify the optimal dependence of the constants cp,q,w and Cp,q,w on the Ap characteristics of the weights involved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
18
期刊介绍: IJM strives to publish high quality research papers in all areas of mainstream mathematics that are of interest to a substantial number of its readers. IJM is published by Duke University Press on behalf of the Department of Mathematics at the University of Illinois at Urbana-Champaign.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信