高斯偏移集欧拉特性的中心极限定理

IF 2.1 1区 数学 Q1 STATISTICS & PROBABILITY
A. Estrade, J. León
{"title":"高斯偏移集欧拉特性的中心极限定理","authors":"A. Estrade, J. León","doi":"10.1214/15-AOP1062","DOIUrl":null,"url":null,"abstract":"We study the Euler characteristic of an excursion set of a stationary isotropic Gaussian random field $X:\\Omega\\times\\mathbb{R}^d\\to\\mathbb{R}$. Let us fix a level $u\\in \\R$ and let us consider the excursion set above $u$, $A(T,u)=\\{t\\in T:\\,X(t)\\ge u\\}$ where $T$ is a bounded cube $\\subset \\R^d$. The aim of this paper is to establish a central limit theorem for the Euler characteristic of $A(T,u)$ as $T$ grows to $\\R^d$, as conjectured by R. Adler more than ten years ago. \n \nThe required assumption on $X$ is $C^3$ regularity of the trajectories, non degeneracy of the Gaussian vector $X(t)$ and derivatives at any fixed point $t\\in \\R^d$ as well as integrability on $\\R^d$ of the covariance function and its derivatives. The fact that $X$ is $C^3$ is stronger than Geman's assumption traditionally used in dimension one. Nevertheless, our result extends what is known in dimension one to higher dimension. In that case, the Euler characteristic of $A(T,u)$ equals the number of up-crossings of $X$ at level $u$, plus eventually one if $X$ is above $u$ at the left bound of the interval $T$.","PeriodicalId":50763,"journal":{"name":"Annals of Probability","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1214/15-AOP1062","citationCount":"57","resultStr":"{\"title\":\"A central limit theorem for the Euler characteristic of a Gaussian excursion set\",\"authors\":\"A. Estrade, J. León\",\"doi\":\"10.1214/15-AOP1062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the Euler characteristic of an excursion set of a stationary isotropic Gaussian random field $X:\\\\Omega\\\\times\\\\mathbb{R}^d\\\\to\\\\mathbb{R}$. Let us fix a level $u\\\\in \\\\R$ and let us consider the excursion set above $u$, $A(T,u)=\\\\{t\\\\in T:\\\\,X(t)\\\\ge u\\\\}$ where $T$ is a bounded cube $\\\\subset \\\\R^d$. The aim of this paper is to establish a central limit theorem for the Euler characteristic of $A(T,u)$ as $T$ grows to $\\\\R^d$, as conjectured by R. Adler more than ten years ago. \\n \\nThe required assumption on $X$ is $C^3$ regularity of the trajectories, non degeneracy of the Gaussian vector $X(t)$ and derivatives at any fixed point $t\\\\in \\\\R^d$ as well as integrability on $\\\\R^d$ of the covariance function and its derivatives. The fact that $X$ is $C^3$ is stronger than Geman's assumption traditionally used in dimension one. Nevertheless, our result extends what is known in dimension one to higher dimension. In that case, the Euler characteristic of $A(T,u)$ equals the number of up-crossings of $X$ at level $u$, plus eventually one if $X$ is above $u$ at the left bound of the interval $T$.\",\"PeriodicalId\":50763,\"journal\":{\"name\":\"Annals of Probability\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1214/15-AOP1062\",\"citationCount\":\"57\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/15-AOP1062\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/15-AOP1062","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 57

摘要

研究了平稳各向同性高斯随机场偏移集的欧拉特性$X:\Omega\times\mathbb{R}^d\to\mathbb{R}$。让我们固定一个水平$u\in \R$并考虑上面的偏移集$u$, $A(T,u)=\{t\in T:\,X(t)\ge u\}$其中$T$是一个有界立方体$\subset \R^d$。本文的目的是建立一个中心极限定理,用于证明十多年前R. Adler猜想的$T$增长到$\R^d$时$A(T,u)$的欧拉特性。在$X$上需要的假设是$C^3$轨迹的规律性,高斯矢量$X(t)$和在任意不动点的导数的不简并性$t\in \R^d$以及协方差函数及其导数在$\R^d$上的可积性。事实上,$X$ = $C^3$比german传统上在一维中使用的假设更有力。然而,我们的结果将已知的一维扩展到更高的维度。在这种情况下,$A(T,u)$的欧拉特性等于$X$在水平$u$向上交叉的次数,如果$X$在区间$T$的左界高于$u$,则最终加1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A central limit theorem for the Euler characteristic of a Gaussian excursion set
We study the Euler characteristic of an excursion set of a stationary isotropic Gaussian random field $X:\Omega\times\mathbb{R}^d\to\mathbb{R}$. Let us fix a level $u\in \R$ and let us consider the excursion set above $u$, $A(T,u)=\{t\in T:\,X(t)\ge u\}$ where $T$ is a bounded cube $\subset \R^d$. The aim of this paper is to establish a central limit theorem for the Euler characteristic of $A(T,u)$ as $T$ grows to $\R^d$, as conjectured by R. Adler more than ten years ago. The required assumption on $X$ is $C^3$ regularity of the trajectories, non degeneracy of the Gaussian vector $X(t)$ and derivatives at any fixed point $t\in \R^d$ as well as integrability on $\R^d$ of the covariance function and its derivatives. The fact that $X$ is $C^3$ is stronger than Geman's assumption traditionally used in dimension one. Nevertheless, our result extends what is known in dimension one to higher dimension. In that case, the Euler characteristic of $A(T,u)$ equals the number of up-crossings of $X$ at level $u$, plus eventually one if $X$ is above $u$ at the left bound of the interval $T$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Probability
Annals of Probability 数学-统计学与概率论
CiteScore
4.60
自引率
8.70%
发文量
61
审稿时长
6-12 weeks
期刊介绍: The Annals of Probability publishes research papers in modern probability theory, its relations to other areas of mathematics, and its applications in the physical and biological sciences. Emphasis is on importance, interest, and originality – formal novelty and correctness are not sufficient for publication. The Annals will also publish authoritative review papers and surveys of areas in vigorous development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信