{"title":"鞅小球概率的高斯上界","authors":"James R. Lee, Y. Peres, Charles K. Smart","doi":"10.1214/15-AOP1073","DOIUrl":null,"url":null,"abstract":"Consider a discrete-time martingale {Xt}{Xt} taking values in a Hilbert space HH. We show that if for some L≥1L≥1, the bounds E[∥Xt+1−Xt∥2H|Xt]=1E[‖Xt+1−Xt‖H2|Xt]=1 and ∥Xt+1−Xt∥H≤L‖Xt+1−Xt‖H≤L are satisfied for all times t≥0t≥0, then there is a constant c=c(L)c=c(L) such that for 1≤R≤t√1≤R≤t, \n \nP(∥Xt−X0∥H≤R)≤cRt√. \nP(‖Xt−X0‖H≤R)≤cRt. \nFollowing Lee and Peres [Ann. Probab. 41 (2013) 3392–3419], this estimate has applications to small-ball estimates for random walks on vertex-transitive graphs: We show that for every infinite, connected, vertex-transitive graph GG with bounded degree, there is a constant CG>0CG>0 such that if {Zt}{Zt} is the simple random walk on GG, then for every e>0e>0 and t≥1/e2t≥1/e2, \n \nP(distG(Zt,Z0)≤et√)≤CGe, \nP(distG(Zt,Z0)≤et)≤CGe, \nwhere distGdistG denotes the graph distance in GG.","PeriodicalId":50763,"journal":{"name":"Annals of Probability","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2014-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1214/15-AOP1073","citationCount":"12","resultStr":"{\"title\":\"A Gaussian upper bound for martingale small-ball probabilities\",\"authors\":\"James R. Lee, Y. Peres, Charles K. Smart\",\"doi\":\"10.1214/15-AOP1073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider a discrete-time martingale {Xt}{Xt} taking values in a Hilbert space HH. We show that if for some L≥1L≥1, the bounds E[∥Xt+1−Xt∥2H|Xt]=1E[‖Xt+1−Xt‖H2|Xt]=1 and ∥Xt+1−Xt∥H≤L‖Xt+1−Xt‖H≤L are satisfied for all times t≥0t≥0, then there is a constant c=c(L)c=c(L) such that for 1≤R≤t√1≤R≤t, \\n \\nP(∥Xt−X0∥H≤R)≤cRt√. \\nP(‖Xt−X0‖H≤R)≤cRt. \\nFollowing Lee and Peres [Ann. Probab. 41 (2013) 3392–3419], this estimate has applications to small-ball estimates for random walks on vertex-transitive graphs: We show that for every infinite, connected, vertex-transitive graph GG with bounded degree, there is a constant CG>0CG>0 such that if {Zt}{Zt} is the simple random walk on GG, then for every e>0e>0 and t≥1/e2t≥1/e2, \\n \\nP(distG(Zt,Z0)≤et√)≤CGe, \\nP(distG(Zt,Z0)≤et)≤CGe, \\nwhere distGdistG denotes the graph distance in GG.\",\"PeriodicalId\":50763,\"journal\":{\"name\":\"Annals of Probability\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2014-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1214/15-AOP1073\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/15-AOP1073\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/15-AOP1073","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
A Gaussian upper bound for martingale small-ball probabilities
Consider a discrete-time martingale {Xt}{Xt} taking values in a Hilbert space HH. We show that if for some L≥1L≥1, the bounds E[∥Xt+1−Xt∥2H|Xt]=1E[‖Xt+1−Xt‖H2|Xt]=1 and ∥Xt+1−Xt∥H≤L‖Xt+1−Xt‖H≤L are satisfied for all times t≥0t≥0, then there is a constant c=c(L)c=c(L) such that for 1≤R≤t√1≤R≤t,
P(∥Xt−X0∥H≤R)≤cRt√.
P(‖Xt−X0‖H≤R)≤cRt.
Following Lee and Peres [Ann. Probab. 41 (2013) 3392–3419], this estimate has applications to small-ball estimates for random walks on vertex-transitive graphs: We show that for every infinite, connected, vertex-transitive graph GG with bounded degree, there is a constant CG>0CG>0 such that if {Zt}{Zt} is the simple random walk on GG, then for every e>0e>0 and t≥1/e2t≥1/e2,
P(distG(Zt,Z0)≤et√)≤CGe,
P(distG(Zt,Z0)≤et)≤CGe,
where distGdistG denotes the graph distance in GG.
期刊介绍:
The Annals of Probability publishes research papers in modern probability theory, its relations to other areas of mathematics, and its applications in the physical and biological sciences. Emphasis is on importance, interest, and originality – formal novelty and correctness are not sufficient for publication. The Annals will also publish authoritative review papers and surveys of areas in vigorous development.