具有不规则漂移的Hilbert空间中SDEs的强唯一性

IF 2.1 1区 数学 Q1 STATISTICS & PROBABILITY
G. Prato, Franco Flandoli, M. Röckner, A. Veretennikov
{"title":"具有不规则漂移的Hilbert空间中SDEs的强唯一性","authors":"G. Prato, Franco Flandoli, M. Röckner, A. Veretennikov","doi":"10.1214/15-AOP1016","DOIUrl":null,"url":null,"abstract":"We prove pathwise uniqueness for a class of stochastic dierential equations (SDE) on a Hilbert space with cylindrical Wiener noise, whose non-linear drift parts are sums of the subdierential of a convex function and a bounded part. This generalizes a classical result by one of the authors to innite dimensions. Our results also generalize","PeriodicalId":50763,"journal":{"name":"Annals of Probability","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2014-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1214/15-AOP1016","citationCount":"46","resultStr":"{\"title\":\"Strong uniqueness for SDEs in Hilbert spaces with nonregular drift\",\"authors\":\"G. Prato, Franco Flandoli, M. Röckner, A. Veretennikov\",\"doi\":\"10.1214/15-AOP1016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove pathwise uniqueness for a class of stochastic dierential equations (SDE) on a Hilbert space with cylindrical Wiener noise, whose non-linear drift parts are sums of the subdierential of a convex function and a bounded part. This generalizes a classical result by one of the authors to innite dimensions. Our results also generalize\",\"PeriodicalId\":50763,\"journal\":{\"name\":\"Annals of Probability\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2014-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1214/15-AOP1016\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/15-AOP1016\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/15-AOP1016","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 46

摘要

我们证明了一类随机微分方程(SDE)在具有圆柱Wiener噪声的Hilbert空间上的路径唯一性,其非线性漂移部分是凸函数的次微分部分与有界部分的和。这将作者之一的经典结果推广到无限维。我们的结果也可以推广
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strong uniqueness for SDEs in Hilbert spaces with nonregular drift
We prove pathwise uniqueness for a class of stochastic dierential equations (SDE) on a Hilbert space with cylindrical Wiener noise, whose non-linear drift parts are sums of the subdierential of a convex function and a bounded part. This generalizes a classical result by one of the authors to innite dimensions. Our results also generalize
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Probability
Annals of Probability 数学-统计学与概率论
CiteScore
4.60
自引率
8.70%
发文量
61
审稿时长
6-12 weeks
期刊介绍: The Annals of Probability publishes research papers in modern probability theory, its relations to other areas of mathematics, and its applications in the physical and biological sciences. Emphasis is on importance, interest, and originality – formal novelty and correctness are not sufficient for publication. The Annals will also publish authoritative review papers and surveys of areas in vigorous development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信