具有广义时空高斯噪声的抛物型Anderson模型的空间渐近性

IF 2.1 1区 数学 Q1 STATISTICS & PROBABILITY
Xia Chen
{"title":"具有广义时空高斯噪声的抛物型Anderson模型的空间渐近性","authors":"Xia Chen","doi":"10.1214/15-AOP1006","DOIUrl":null,"url":null,"abstract":"Partially motivated by the recent papers of Conus, Joseph and Khoshnevisan [Ann. Probab. 41 (2013) 2225–2260] and Conus et al. [Probab. Theory Related Fields 156 (2013) 483–533], this work is concerned with the precise spatial asymptotic behavior for the parabolic Anderson equation \n{∂u∂t(t,x)=12Δu(t,x)+V(t,x)u(t,x),u(0,x)=u0(x), \nwhere the homogeneous generalized Gaussian noise V(t,x) \nis, among other forms, white or fractional white in time and space. Associated with the Cole–Hopf solution to the KPZ equation, in particular, the precise asymptotic form \nlimR→∞(logR)−2/3logmax|x|≤Ru(t,x)=342t3−−−√3a.s. \nis obtained for the parabolic Anderson model ∂tu=12∂2xxu+W˙u with the (1+1)-white noise W˙(t,x). In addition, some links between time and space asymptotics for the parabolic Anderson equation are also pursued.","PeriodicalId":50763,"journal":{"name":"Annals of Probability","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2016-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1214/15-AOP1006","citationCount":"44","resultStr":"{\"title\":\"Spatial asymptotics for the parabolic Anderson models with generalized time–space Gaussian noise\",\"authors\":\"Xia Chen\",\"doi\":\"10.1214/15-AOP1006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Partially motivated by the recent papers of Conus, Joseph and Khoshnevisan [Ann. Probab. 41 (2013) 2225–2260] and Conus et al. [Probab. Theory Related Fields 156 (2013) 483–533], this work is concerned with the precise spatial asymptotic behavior for the parabolic Anderson equation \\n{∂u∂t(t,x)=12Δu(t,x)+V(t,x)u(t,x),u(0,x)=u0(x), \\nwhere the homogeneous generalized Gaussian noise V(t,x) \\nis, among other forms, white or fractional white in time and space. Associated with the Cole–Hopf solution to the KPZ equation, in particular, the precise asymptotic form \\nlimR→∞(logR)−2/3logmax|x|≤Ru(t,x)=342t3−−−√3a.s. \\nis obtained for the parabolic Anderson model ∂tu=12∂2xxu+W˙u with the (1+1)-white noise W˙(t,x). In addition, some links between time and space asymptotics for the parabolic Anderson equation are also pursued.\",\"PeriodicalId\":50763,\"journal\":{\"name\":\"Annals of Probability\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2016-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1214/15-AOP1006\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/15-AOP1006\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/15-AOP1006","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 44

摘要

部分原因是Conus, Joseph和Khoshnevisan最近的论文[Ann]。[Probab. 41(2013) 2225-2260]和Conus等人。理论相关领域156(2013)483-533],本文研究了抛物型Anderson方程{∂u∂t(t,x)=12Δu(t,x)+V(t,x)u(t,x),u(0,x)=u0(x)的精确空间渐近行为,其中齐次广义高斯噪声V(t,x)在时间和空间上为白色或分数白色。结合KPZ方程的Cole-Hopf解,得到了精确的渐近形式limR→∞(logR)−2/3logmax|x|≤Ru(t,x)=342t3−−−√3a。为抛物线型安德森模型∂tu=12∂2xxu+W˙u,具有(1+1)-白噪声W˙(t,x)。此外,还讨论了抛物型安德森方程的时间渐近性与空间渐近性之间的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatial asymptotics for the parabolic Anderson models with generalized time–space Gaussian noise
Partially motivated by the recent papers of Conus, Joseph and Khoshnevisan [Ann. Probab. 41 (2013) 2225–2260] and Conus et al. [Probab. Theory Related Fields 156 (2013) 483–533], this work is concerned with the precise spatial asymptotic behavior for the parabolic Anderson equation {∂u∂t(t,x)=12Δu(t,x)+V(t,x)u(t,x),u(0,x)=u0(x), where the homogeneous generalized Gaussian noise V(t,x) is, among other forms, white or fractional white in time and space. Associated with the Cole–Hopf solution to the KPZ equation, in particular, the precise asymptotic form limR→∞(logR)−2/3logmax|x|≤Ru(t,x)=342t3−−−√3a.s. is obtained for the parabolic Anderson model ∂tu=12∂2xxu+W˙u with the (1+1)-white noise W˙(t,x). In addition, some links between time and space asymptotics for the parabolic Anderson equation are also pursued.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Probability
Annals of Probability 数学-统计学与概率论
CiteScore
4.60
自引率
8.70%
发文量
61
审稿时长
6-12 weeks
期刊介绍: The Annals of Probability publishes research papers in modern probability theory, its relations to other areas of mathematics, and its applications in the physical and biological sciences. Emphasis is on importance, interest, and originality – formal novelty and correctness are not sufficient for publication. The Annals will also publish authoritative review papers and surveys of areas in vigorous development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信