Melinda A. Coleman, Ming Feng, Moninya Roughan, Paulina Cetina-Heredia, Sean D. Connell
{"title":"澳大利亚边界流的温带陆架水扩散:对种群连通性的影响","authors":"Melinda A. Coleman, Ming Feng, Moninya Roughan, Paulina Cetina-Heredia, Sean D. Connell","doi":"10.1215/21573689-2409306","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Boundary currents have been recognized as potential drivers of spatial heterogeneity in the ocean because of their role in physical transport and influence on large-scale coastal processes. In this study, we used particle tracking methods in a data-assimilating eddy-resolving ocean circulation model to determine the effect of multiple boundary currents on connectivity around temperate Australia during the austral winter. Results demonstrated that oceanographic connectivity was asymmetric around Australia, having greater eastward trajectories due to more favorable ocean boundary currents during this season. We validated connectivity patterns with genetic data from an ecologically important species, the kelp, <i>Ecklonia radiata</i>, which has greater genetic similarity between the west and south coasts of Australia, compared with the east coast, likely due to predominantly eastward propagule dispersal. Boundary current circulation was a coarse predictor of kelp genetic connectivity on multigeneration time scales, and the nature of these relationships varied among the three boundary current systems according to mean current strength.</p>\n </div>","PeriodicalId":100878,"journal":{"name":"Limnology and Oceanography: Fluids and Environments","volume":"3 1","pages":"295-309"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1215/21573689-2409306","citationCount":"44","resultStr":"{\"title\":\"Temperate shelf water dispersal by Australian boundary currents: Implications for population connectivity\",\"authors\":\"Melinda A. Coleman, Ming Feng, Moninya Roughan, Paulina Cetina-Heredia, Sean D. Connell\",\"doi\":\"10.1215/21573689-2409306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Boundary currents have been recognized as potential drivers of spatial heterogeneity in the ocean because of their role in physical transport and influence on large-scale coastal processes. In this study, we used particle tracking methods in a data-assimilating eddy-resolving ocean circulation model to determine the effect of multiple boundary currents on connectivity around temperate Australia during the austral winter. Results demonstrated that oceanographic connectivity was asymmetric around Australia, having greater eastward trajectories due to more favorable ocean boundary currents during this season. We validated connectivity patterns with genetic data from an ecologically important species, the kelp, <i>Ecklonia radiata</i>, which has greater genetic similarity between the west and south coasts of Australia, compared with the east coast, likely due to predominantly eastward propagule dispersal. Boundary current circulation was a coarse predictor of kelp genetic connectivity on multigeneration time scales, and the nature of these relationships varied among the three boundary current systems according to mean current strength.</p>\\n </div>\",\"PeriodicalId\":100878,\"journal\":{\"name\":\"Limnology and Oceanography: Fluids and Environments\",\"volume\":\"3 1\",\"pages\":\"295-309\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1215/21573689-2409306\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Limnology and Oceanography: Fluids and Environments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1215/21573689-2409306\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography: Fluids and Environments","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1215/21573689-2409306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Temperate shelf water dispersal by Australian boundary currents: Implications for population connectivity
Boundary currents have been recognized as potential drivers of spatial heterogeneity in the ocean because of their role in physical transport and influence on large-scale coastal processes. In this study, we used particle tracking methods in a data-assimilating eddy-resolving ocean circulation model to determine the effect of multiple boundary currents on connectivity around temperate Australia during the austral winter. Results demonstrated that oceanographic connectivity was asymmetric around Australia, having greater eastward trajectories due to more favorable ocean boundary currents during this season. We validated connectivity patterns with genetic data from an ecologically important species, the kelp, Ecklonia radiata, which has greater genetic similarity between the west and south coasts of Australia, compared with the east coast, likely due to predominantly eastward propagule dispersal. Boundary current circulation was a coarse predictor of kelp genetic connectivity on multigeneration time scales, and the nature of these relationships varied among the three boundary current systems according to mean current strength.