{"title":"路径空间上收敛到超布朗运动的一个判据","authors":"R. Hofstad, Mark Holmes, E. Perkins","doi":"10.1214/14-aop953","DOIUrl":null,"url":null,"abstract":"We give a sufficient condition for tightness for convergence of rescaled critical spatial structures to the canonical measure of super-Brownian motion. This condition is formulated in terms of the rr-point functions for r=2,…,5r=2,…,5. The rr-point functions describe the expected number of particles at given times and spatial locations, and have been investigated in the literature for many high-dimensional statistical physics models, such as oriented percolation and the contact process above 4 dimensions and lattice trees above 8 dimensions. In these settings, convergence of the finite-dimensional distributions is known through an analysis of the rr-point functions, but the lack of tightness has been an obstruction to proving convergence on path space. We apply our tightness condition first to critical branching random walk to illustrate the method as tightness here is well known. We then use it to prove tightness for sufficiently spread-out lattice trees above 8 dimensions, thus proving that the measure-valued process describing the distribution of mass as a function of time converges in distribution to the canonical measure of super-Brownian motion. We conjecture that the criterion will also apply to other statistical physics models.","PeriodicalId":50763,"journal":{"name":"Annals of Probability","volume":"45 1","pages":"278-376"},"PeriodicalIF":2.1000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1214/14-aop953","citationCount":"11","resultStr":"{\"title\":\"A criterion for convergence to super-Brownian motion on path space\",\"authors\":\"R. Hofstad, Mark Holmes, E. Perkins\",\"doi\":\"10.1214/14-aop953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a sufficient condition for tightness for convergence of rescaled critical spatial structures to the canonical measure of super-Brownian motion. This condition is formulated in terms of the rr-point functions for r=2,…,5r=2,…,5. The rr-point functions describe the expected number of particles at given times and spatial locations, and have been investigated in the literature for many high-dimensional statistical physics models, such as oriented percolation and the contact process above 4 dimensions and lattice trees above 8 dimensions. In these settings, convergence of the finite-dimensional distributions is known through an analysis of the rr-point functions, but the lack of tightness has been an obstruction to proving convergence on path space. We apply our tightness condition first to critical branching random walk to illustrate the method as tightness here is well known. We then use it to prove tightness for sufficiently spread-out lattice trees above 8 dimensions, thus proving that the measure-valued process describing the distribution of mass as a function of time converges in distribution to the canonical measure of super-Brownian motion. We conjecture that the criterion will also apply to other statistical physics models.\",\"PeriodicalId\":50763,\"journal\":{\"name\":\"Annals of Probability\",\"volume\":\"45 1\",\"pages\":\"278-376\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1214/14-aop953\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/14-aop953\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/14-aop953","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
A criterion for convergence to super-Brownian motion on path space
We give a sufficient condition for tightness for convergence of rescaled critical spatial structures to the canonical measure of super-Brownian motion. This condition is formulated in terms of the rr-point functions for r=2,…,5r=2,…,5. The rr-point functions describe the expected number of particles at given times and spatial locations, and have been investigated in the literature for many high-dimensional statistical physics models, such as oriented percolation and the contact process above 4 dimensions and lattice trees above 8 dimensions. In these settings, convergence of the finite-dimensional distributions is known through an analysis of the rr-point functions, but the lack of tightness has been an obstruction to proving convergence on path space. We apply our tightness condition first to critical branching random walk to illustrate the method as tightness here is well known. We then use it to prove tightness for sufficiently spread-out lattice trees above 8 dimensions, thus proving that the measure-valued process describing the distribution of mass as a function of time converges in distribution to the canonical measure of super-Brownian motion. We conjecture that the criterion will also apply to other statistical physics models.
期刊介绍:
The Annals of Probability publishes research papers in modern probability theory, its relations to other areas of mathematics, and its applications in the physical and biological sciences. Emphasis is on importance, interest, and originality – formal novelty and correctness are not sufficient for publication. The Annals will also publish authoritative review papers and surveys of areas in vigorous development.