高斯乘法混沌及其应用综述

IF 1.3 Q2 STATISTICS & PROBABILITY
Rémi Rhodes, V. Vargas
{"title":"高斯乘法混沌及其应用综述","authors":"Rémi Rhodes, V. Vargas","doi":"10.1214/13-PS218","DOIUrl":null,"url":null,"abstract":"In this article, we review the theory of Gaussian multiplicative chaos initially introduced by Kahane’s seminal work in 1985. Though this beautiful paper faded from memory until recently, it already contains ideas and results that are nowadays under active investigation, like the construction of the Liouville measure in 2d-Liouville quantum gravity or thick points of the Gaussian Free Field. Also, we mention important extensions and generalizations of this theory that have emerged ever since and discuss a whole family of applications, ranging from nance, through the Kolmogorov-Obukhov model of turbulence to 2d-Liouville quantum gravity. This review also includes new results like the convergence of discretized Liouville measures on isoradial graphs (thus including the triangle and square lattices) towards the continuous Liouville measures (in the subcritical and critical case) or multifractal analysis of the measures in all dimensions.","PeriodicalId":46216,"journal":{"name":"Probability Surveys","volume":"31 1","pages":"315-392"},"PeriodicalIF":1.3000,"publicationDate":"2013-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1214/13-PS218","citationCount":"409","resultStr":"{\"title\":\"Gaussian multiplicative chaos and applications: A review\",\"authors\":\"Rémi Rhodes, V. Vargas\",\"doi\":\"10.1214/13-PS218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we review the theory of Gaussian multiplicative chaos initially introduced by Kahane’s seminal work in 1985. Though this beautiful paper faded from memory until recently, it already contains ideas and results that are nowadays under active investigation, like the construction of the Liouville measure in 2d-Liouville quantum gravity or thick points of the Gaussian Free Field. Also, we mention important extensions and generalizations of this theory that have emerged ever since and discuss a whole family of applications, ranging from nance, through the Kolmogorov-Obukhov model of turbulence to 2d-Liouville quantum gravity. This review also includes new results like the convergence of discretized Liouville measures on isoradial graphs (thus including the triangle and square lattices) towards the continuous Liouville measures (in the subcritical and critical case) or multifractal analysis of the measures in all dimensions.\",\"PeriodicalId\":46216,\"journal\":{\"name\":\"Probability Surveys\",\"volume\":\"31 1\",\"pages\":\"315-392\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2013-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1214/13-PS218\",\"citationCount\":\"409\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probability Surveys\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/13-PS218\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/13-PS218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 409

摘要

在这篇文章中,我们回顾了高斯乘法混沌理论最初是由Kahane在1985年的开创性工作中提出的。虽然这篇漂亮的论文直到最近才淡出人们的记忆,但它已经包含了一些现在正在积极研究的想法和结果,比如二维刘维尔量子引力中的刘维尔测度的构建,或者高斯自由场的厚点。此外,我们还提到了这一理论的重要扩展和推广,并讨论了一系列的应用,从金融,到Kolmogorov-Obukhov湍流模型,再到2d-Liouville量子引力。本综述还包括一些新的结果,如离散化Liouville测度在等径向图(包括三角形和正方形格)上向连续Liouville测度(在亚临界和临界情况下)的收敛性,或测度在所有维度上的多重分形分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gaussian multiplicative chaos and applications: A review
In this article, we review the theory of Gaussian multiplicative chaos initially introduced by Kahane’s seminal work in 1985. Though this beautiful paper faded from memory until recently, it already contains ideas and results that are nowadays under active investigation, like the construction of the Liouville measure in 2d-Liouville quantum gravity or thick points of the Gaussian Free Field. Also, we mention important extensions and generalizations of this theory that have emerged ever since and discuss a whole family of applications, ranging from nance, through the Kolmogorov-Obukhov model of turbulence to 2d-Liouville quantum gravity. This review also includes new results like the convergence of discretized Liouville measures on isoradial graphs (thus including the triangle and square lattices) towards the continuous Liouville measures (in the subcritical and critical case) or multifractal analysis of the measures in all dimensions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Probability Surveys
Probability Surveys STATISTICS & PROBABILITY-
CiteScore
4.70
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信